diff options
Diffstat (limited to 'drivers/android/binder/range_alloc/array.rs')
-rw-r--r-- | drivers/android/binder/range_alloc/array.rs | 251 |
1 files changed, 251 insertions, 0 deletions
diff --git a/drivers/android/binder/range_alloc/array.rs b/drivers/android/binder/range_alloc/array.rs new file mode 100644 index 000000000000..07e1dec2ce63 --- /dev/null +++ b/drivers/android/binder/range_alloc/array.rs @@ -0,0 +1,251 @@ +// SPDX-License-Identifier: GPL-2.0 + +// Copyright (C) 2025 Google LLC. + +use kernel::{ + page::{PAGE_MASK, PAGE_SIZE}, + prelude::*, + seq_file::SeqFile, + seq_print, + task::Pid, +}; + +use crate::range_alloc::{DescriptorState, FreedRange, Range}; + +/// Keeps track of allocations in a process' mmap. +/// +/// Each process has an mmap where the data for incoming transactions will be placed. This struct +/// keeps track of allocations made in the mmap. For each allocation, we store a descriptor that +/// has metadata related to the allocation. We also keep track of available free space. +pub(super) struct ArrayRangeAllocator<T> { + /// This stores all ranges that are allocated. Unlike the tree based allocator, we do *not* + /// store the free ranges. + /// + /// Sorted by offset. + pub(super) ranges: KVec<Range<T>>, + size: usize, + free_oneway_space: usize, +} + +struct FindEmptyRes { + /// Which index in `ranges` should we insert the new range at? + /// + /// Inserting the new range at this index keeps `ranges` sorted. + insert_at_idx: usize, + /// Which offset should we insert the new range at? + insert_at_offset: usize, +} + +impl<T> ArrayRangeAllocator<T> { + pub(crate) fn new(size: usize, alloc: EmptyArrayAlloc<T>) -> Self { + Self { + ranges: alloc.ranges, + size, + free_oneway_space: size / 2, + } + } + + pub(crate) fn free_oneway_space(&self) -> usize { + self.free_oneway_space + } + + pub(crate) fn count_buffers(&self) -> usize { + self.ranges.len() + } + + pub(crate) fn total_size(&self) -> usize { + self.size + } + + pub(crate) fn is_full(&self) -> bool { + self.ranges.len() == self.ranges.capacity() + } + + pub(crate) fn debug_print(&self, m: &SeqFile) -> Result<()> { + for range in &self.ranges { + seq_print!( + m, + " buffer {}: {} size {} pid {} oneway {}", + 0, + range.offset, + range.size, + range.state.pid(), + range.state.is_oneway(), + ); + if let DescriptorState::Reserved(_) = range.state { + seq_print!(m, " reserved\n"); + } else { + seq_print!(m, " allocated\n"); + } + } + Ok(()) + } + + /// Find somewhere to put a new range. + /// + /// Unlike the tree implementation, we do not bother to find the smallest gap. The idea is that + /// fragmentation isn't a big issue when we don't have many ranges. + /// + /// Returns the index that the new range should have in `self.ranges` after insertion. + fn find_empty_range(&self, size: usize) -> Option<FindEmptyRes> { + let after_last_range = self.ranges.last().map(Range::endpoint).unwrap_or(0); + + if size <= self.total_size() - after_last_range { + // We can put the range at the end, so just do that. + Some(FindEmptyRes { + insert_at_idx: self.ranges.len(), + insert_at_offset: after_last_range, + }) + } else { + let mut end_of_prev = 0; + for (i, range) in self.ranges.iter().enumerate() { + // Does it fit before the i'th range? + if size <= range.offset - end_of_prev { + return Some(FindEmptyRes { + insert_at_idx: i, + insert_at_offset: end_of_prev, + }); + } + end_of_prev = range.endpoint(); + } + None + } + } + + pub(crate) fn reserve_new( + &mut self, + debug_id: usize, + size: usize, + is_oneway: bool, + pid: Pid, + ) -> Result<usize> { + // Compute new value of free_oneway_space, which is set only on success. + let new_oneway_space = if is_oneway { + match self.free_oneway_space.checked_sub(size) { + Some(new_oneway_space) => new_oneway_space, + None => return Err(ENOSPC), + } + } else { + self.free_oneway_space + }; + + let FindEmptyRes { + insert_at_idx, + insert_at_offset, + } = self.find_empty_range(size).ok_or(ENOSPC)?; + self.free_oneway_space = new_oneway_space; + + let new_range = Range { + offset: insert_at_offset, + size, + state: DescriptorState::new(is_oneway, debug_id, pid), + }; + // Insert the value at the given index to keep the array sorted. + self.ranges + .insert_within_capacity(insert_at_idx, new_range) + .ok() + .unwrap(); + + Ok(insert_at_offset) + } + + pub(crate) fn reservation_abort(&mut self, offset: usize) -> Result<FreedRange> { + // This could use a binary search, but linear scans are usually faster for small arrays. + let i = self + .ranges + .iter() + .position(|range| range.offset == offset) + .ok_or(EINVAL)?; + let range = &self.ranges[i]; + + if let DescriptorState::Allocated(_) = range.state { + return Err(EPERM); + } + + let size = range.size; + let offset = range.offset; + + if range.state.is_oneway() { + self.free_oneway_space += size; + } + + // This computes the range of pages that are no longer used by *any* allocated range. The + // caller will mark them as unused, which means that they can be freed if the system comes + // under memory pressure. + let mut freed_range = FreedRange::interior_pages(offset, size); + #[expect(clippy::collapsible_if)] // reads better like this + if offset % PAGE_SIZE != 0 { + if i == 0 || self.ranges[i - 1].endpoint() <= (offset & PAGE_MASK) { + freed_range.start_page_idx -= 1; + } + } + if range.endpoint() % PAGE_SIZE != 0 { + let page_after = (range.endpoint() & PAGE_MASK) + PAGE_SIZE; + if i + 1 == self.ranges.len() || page_after <= self.ranges[i + 1].offset { + freed_range.end_page_idx += 1; + } + } + + self.ranges.remove(i)?; + Ok(freed_range) + } + + pub(crate) fn reservation_commit(&mut self, offset: usize, data: &mut Option<T>) -> Result { + // This could use a binary search, but linear scans are usually faster for small arrays. + let range = self + .ranges + .iter_mut() + .find(|range| range.offset == offset) + .ok_or(ENOENT)?; + + let DescriptorState::Reserved(reservation) = &range.state else { + return Err(ENOENT); + }; + + range.state = DescriptorState::Allocated(reservation.clone().allocate(data.take())); + Ok(()) + } + + pub(crate) fn reserve_existing(&mut self, offset: usize) -> Result<(usize, usize, Option<T>)> { + // This could use a binary search, but linear scans are usually faster for small arrays. + let range = self + .ranges + .iter_mut() + .find(|range| range.offset == offset) + .ok_or(ENOENT)?; + + let DescriptorState::Allocated(allocation) = &mut range.state else { + return Err(ENOENT); + }; + + let data = allocation.take(); + let debug_id = allocation.reservation.debug_id; + range.state = DescriptorState::Reserved(allocation.reservation.clone()); + Ok((range.size, debug_id, data)) + } + + pub(crate) fn take_for_each<F: Fn(usize, usize, usize, Option<T>)>(&mut self, callback: F) { + for range in self.ranges.iter_mut() { + if let DescriptorState::Allocated(allocation) = &mut range.state { + callback( + range.offset, + range.size, + allocation.reservation.debug_id, + allocation.data.take(), + ); + } + } + } +} + +pub(crate) struct EmptyArrayAlloc<T> { + ranges: KVec<Range<T>>, +} + +impl<T> EmptyArrayAlloc<T> { + pub(crate) fn try_new(capacity: usize) -> Result<Self> { + Ok(Self { + ranges: KVec::with_capacity(capacity, GFP_KERNEL)?, + }) + } +} |