summaryrefslogtreecommitdiff
path: root/rust/kernel/bitmap.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/bitmap.rs')
-rw-r--r--rust/kernel/bitmap.rs600
1 files changed, 600 insertions, 0 deletions
diff --git a/rust/kernel/bitmap.rs b/rust/kernel/bitmap.rs
new file mode 100644
index 000000000000..f45915694454
--- /dev/null
+++ b/rust/kernel/bitmap.rs
@@ -0,0 +1,600 @@
+// SPDX-License-Identifier: GPL-2.0
+
+// Copyright (C) 2025 Google LLC.
+
+//! Rust API for bitmap.
+//!
+//! C headers: [`include/linux/bitmap.h`](srctree/include/linux/bitmap.h).
+
+use crate::alloc::{AllocError, Flags};
+use crate::bindings;
+#[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
+use crate::pr_err;
+use core::ptr::NonNull;
+
+const BITS_PER_LONG: usize = bindings::BITS_PER_LONG as usize;
+
+/// Represents a C bitmap. Wraps underlying C bitmap API.
+///
+/// # Invariants
+///
+/// Must reference a `[c_ulong]` long enough to fit `data.len()` bits.
+#[cfg_attr(CONFIG_64BIT, repr(align(8)))]
+#[cfg_attr(not(CONFIG_64BIT), repr(align(4)))]
+pub struct Bitmap {
+ data: [()],
+}
+
+impl Bitmap {
+ /// Borrows a C bitmap.
+ ///
+ /// # Safety
+ ///
+ /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
+ /// that is large enough to hold `nbits` bits.
+ /// * the array must not be freed for the lifetime of this [`Bitmap`]
+ /// * concurrent access only happens through atomic operations
+ pub unsafe fn from_raw<'a>(ptr: *const usize, nbits: usize) -> &'a Bitmap {
+ let data: *const [()] = core::ptr::slice_from_raw_parts(ptr.cast(), nbits);
+ // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
+ // SAFETY:
+ // The caller guarantees that `data` (derived from `ptr` and `nbits`)
+ // points to a valid, initialized, and appropriately sized memory region
+ // that will not be freed for the lifetime 'a.
+ // We are casting `*const [()]` to `*const Bitmap`. The `Bitmap`
+ // struct is a ZST with a `data: [()]` field. This means its layout
+ // is compatible with a slice of `()`, and effectively it's a "thin pointer"
+ // (its size is 0 and alignment is 1). The `slice_from_raw_parts`
+ // function correctly encodes the length (number of bits, not elements)
+ // into the metadata of the fat pointer. Therefore, dereferencing this
+ // pointer as `&Bitmap` is safe given the caller's guarantees.
+ unsafe { &*(data as *const Bitmap) }
+ }
+
+ /// Borrows a C bitmap exclusively.
+ ///
+ /// # Safety
+ ///
+ /// * `ptr` holds a non-null address of an initialized array of `unsigned long`
+ /// that is large enough to hold `nbits` bits.
+ /// * the array must not be freed for the lifetime of this [`Bitmap`]
+ /// * no concurrent access may happen.
+ pub unsafe fn from_raw_mut<'a>(ptr: *mut usize, nbits: usize) -> &'a mut Bitmap {
+ let data: *mut [()] = core::ptr::slice_from_raw_parts_mut(ptr.cast(), nbits);
+ // INVARIANT: `data` references an initialized array that can hold `nbits` bits.
+ // SAFETY:
+ // The caller guarantees that `data` (derived from `ptr` and `nbits`)
+ // points to a valid, initialized, and appropriately sized memory region
+ // that will not be freed for the lifetime 'a.
+ // Furthermore, the caller guarantees no concurrent access will happen,
+ // which upholds the exclusivity requirement for a mutable reference.
+ // Similar to `from_raw`, casting `*mut [()]` to `*mut Bitmap` is
+ // safe because `Bitmap` is a ZST with a `data: [()]` field,
+ // making its layout compatible with a slice of `()`.
+ unsafe { &mut *(data as *mut Bitmap) }
+ }
+
+ /// Returns a raw pointer to the backing [`Bitmap`].
+ pub fn as_ptr(&self) -> *const usize {
+ core::ptr::from_ref::<Bitmap>(self).cast::<usize>()
+ }
+
+ /// Returns a mutable raw pointer to the backing [`Bitmap`].
+ pub fn as_mut_ptr(&mut self) -> *mut usize {
+ core::ptr::from_mut::<Bitmap>(self).cast::<usize>()
+ }
+
+ /// Returns length of this [`Bitmap`].
+ #[expect(clippy::len_without_is_empty)]
+ pub fn len(&self) -> usize {
+ self.data.len()
+ }
+}
+
+/// Holds either a pointer to array of `unsigned long` or a small bitmap.
+#[repr(C)]
+union BitmapRepr {
+ bitmap: usize,
+ ptr: NonNull<usize>,
+}
+
+macro_rules! bitmap_assert {
+ ($cond:expr, $($arg:tt)+) => {
+ #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
+ assert!($cond, $($arg)*);
+ }
+}
+
+macro_rules! bitmap_assert_return {
+ ($cond:expr, $($arg:tt)+) => {
+ #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
+ assert!($cond, $($arg)*);
+
+ #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
+ if !($cond) {
+ pr_err!($($arg)*);
+ return
+ }
+ }
+}
+
+/// Represents an owned bitmap.
+///
+/// Wraps underlying C bitmap API. See [`Bitmap`] for available
+/// methods.
+///
+/// # Examples
+///
+/// Basic usage
+///
+/// ```
+/// use kernel::alloc::flags::GFP_KERNEL;
+/// use kernel::bitmap::BitmapVec;
+///
+/// let mut b = BitmapVec::new(16, GFP_KERNEL)?;
+///
+/// assert_eq!(16, b.len());
+/// for i in 0..16 {
+/// if i % 4 == 0 {
+/// b.set_bit(i);
+/// }
+/// }
+/// assert_eq!(Some(0), b.next_bit(0));
+/// assert_eq!(Some(1), b.next_zero_bit(0));
+/// assert_eq!(Some(4), b.next_bit(1));
+/// assert_eq!(Some(5), b.next_zero_bit(4));
+/// assert_eq!(Some(12), b.last_bit());
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// # Invariants
+///
+/// * `nbits` is `<= i32::MAX` and never changes.
+/// * if `nbits <= bindings::BITS_PER_LONG`, then `repr` is a `usize`.
+/// * otherwise, `repr` holds a non-null pointer to an initialized
+/// array of `unsigned long` that is large enough to hold `nbits` bits.
+pub struct BitmapVec {
+ /// Representation of bitmap.
+ repr: BitmapRepr,
+ /// Length of this bitmap. Must be `<= i32::MAX`.
+ nbits: usize,
+}
+
+impl core::ops::Deref for BitmapVec {
+ type Target = Bitmap;
+
+ fn deref(&self) -> &Bitmap {
+ let ptr = if self.nbits <= BITS_PER_LONG {
+ // SAFETY: Bitmap is represented inline.
+ unsafe { core::ptr::addr_of!(self.repr.bitmap) }
+ } else {
+ // SAFETY: Bitmap is represented as array of `unsigned long`.
+ unsafe { self.repr.ptr.as_ptr() }
+ };
+
+ // SAFETY: We got the right pointer and invariants of [`Bitmap`] hold.
+ // An inline bitmap is treated like an array with single element.
+ unsafe { Bitmap::from_raw(ptr, self.nbits) }
+ }
+}
+
+impl core::ops::DerefMut for BitmapVec {
+ fn deref_mut(&mut self) -> &mut Bitmap {
+ let ptr = if self.nbits <= BITS_PER_LONG {
+ // SAFETY: Bitmap is represented inline.
+ unsafe { core::ptr::addr_of_mut!(self.repr.bitmap) }
+ } else {
+ // SAFETY: Bitmap is represented as array of `unsigned long`.
+ unsafe { self.repr.ptr.as_ptr() }
+ };
+
+ // SAFETY: We got the right pointer and invariants of [`BitmapVec`] hold.
+ // An inline bitmap is treated like an array with single element.
+ unsafe { Bitmap::from_raw_mut(ptr, self.nbits) }
+ }
+}
+
+/// Enable ownership transfer to other threads.
+///
+/// SAFETY: We own the underlying bitmap representation.
+unsafe impl Send for BitmapVec {}
+
+/// Enable unsynchronized concurrent access to [`BitmapVec`] through shared references.
+///
+/// SAFETY: `deref()` will return a reference to a [`Bitmap`]. Its methods
+/// take immutable references are either atomic or read-only.
+unsafe impl Sync for BitmapVec {}
+
+impl Drop for BitmapVec {
+ fn drop(&mut self) {
+ if self.nbits <= BITS_PER_LONG {
+ return;
+ }
+ // SAFETY: `self.ptr` was returned by the C `bitmap_zalloc`.
+ //
+ // INVARIANT: there is no other use of the `self.ptr` after this
+ // call and the value is being dropped so the broken invariant is
+ // not observable on function exit.
+ unsafe { bindings::bitmap_free(self.repr.ptr.as_ptr()) };
+ }
+}
+
+impl BitmapVec {
+ /// Constructs a new [`BitmapVec`].
+ ///
+ /// Fails with [`AllocError`] when the [`BitmapVec`] could not be allocated. This
+ /// includes the case when `nbits` is greater than `i32::MAX`.
+ #[inline]
+ pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> {
+ if nbits <= BITS_PER_LONG {
+ return Ok(BitmapVec {
+ repr: BitmapRepr { bitmap: 0 },
+ nbits,
+ });
+ }
+ if nbits > i32::MAX.try_into().unwrap() {
+ return Err(AllocError);
+ }
+ let nbits_u32 = u32::try_from(nbits).unwrap();
+ // SAFETY: `BITS_PER_LONG < nbits` and `nbits <= i32::MAX`.
+ let ptr = unsafe { bindings::bitmap_zalloc(nbits_u32, flags.as_raw()) };
+ let ptr = NonNull::new(ptr).ok_or(AllocError)?;
+ // INVARIANT: `ptr` returned by C `bitmap_zalloc` and `nbits` checked.
+ Ok(BitmapVec {
+ repr: BitmapRepr { ptr },
+ nbits,
+ })
+ }
+
+ /// Returns length of this [`Bitmap`].
+ #[allow(clippy::len_without_is_empty)]
+ #[inline]
+ pub fn len(&self) -> usize {
+ self.nbits
+ }
+
+ /// Fills this `Bitmap` with random bits.
+ #[cfg(CONFIG_FIND_BIT_BENCHMARK_RUST)]
+ pub fn fill_random(&mut self) {
+ // SAFETY: `self.as_mut_ptr` points to either an array of the
+ // appropriate length or one usize.
+ unsafe {
+ bindings::get_random_bytes(
+ self.as_mut_ptr().cast::<ffi::c_void>(),
+ usize::div_ceil(self.nbits, bindings::BITS_PER_LONG as usize)
+ * bindings::BITS_PER_LONG as usize
+ / 8,
+ );
+ }
+ }
+}
+
+impl Bitmap {
+ /// Set bit with index `index`.
+ ///
+ /// ATTENTION: `set_bit` is non-atomic, which differs from the naming
+ /// convention in C code. The corresponding C function is `__set_bit`.
+ ///
+ /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
+ /// or equal to `self.nbits`, does nothing.
+ ///
+ /// # Panics
+ ///
+ /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
+ /// or equal to `self.nbits`.
+ #[inline]
+ pub fn set_bit(&mut self, index: usize) {
+ bitmap_assert_return!(
+ index < self.len(),
+ "Bit `index` must be < {}, was {}",
+ self.len(),
+ index
+ );
+ // SAFETY: Bit `index` is within bounds.
+ unsafe { bindings::__set_bit(index, self.as_mut_ptr()) };
+ }
+
+ /// Set bit with index `index`, atomically.
+ ///
+ /// This is a relaxed atomic operation (no implied memory barriers).
+ ///
+ /// ATTENTION: The naming convention differs from C, where the corresponding
+ /// function is called `set_bit`.
+ ///
+ /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
+ /// or equal to `self.len()`, does nothing.
+ ///
+ /// # Panics
+ ///
+ /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
+ /// or equal to `self.len()`.
+ #[inline]
+ pub fn set_bit_atomic(&self, index: usize) {
+ bitmap_assert_return!(
+ index < self.len(),
+ "Bit `index` must be < {}, was {}",
+ self.len(),
+ index
+ );
+ // SAFETY: `index` is within bounds and the caller has ensured that
+ // there is no mix of non-atomic and atomic operations.
+ unsafe { bindings::set_bit(index, self.as_ptr().cast_mut()) };
+ }
+
+ /// Clear `index` bit.
+ ///
+ /// ATTENTION: `clear_bit` is non-atomic, which differs from the naming
+ /// convention in C code. The corresponding C function is `__clear_bit`.
+ ///
+ /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
+ /// or equal to `self.len()`, does nothing.
+ ///
+ /// # Panics
+ ///
+ /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
+ /// or equal to `self.len()`.
+ #[inline]
+ pub fn clear_bit(&mut self, index: usize) {
+ bitmap_assert_return!(
+ index < self.len(),
+ "Bit `index` must be < {}, was {}",
+ self.len(),
+ index
+ );
+ // SAFETY: `index` is within bounds.
+ unsafe { bindings::__clear_bit(index, self.as_mut_ptr()) };
+ }
+
+ /// Clear `index` bit, atomically.
+ ///
+ /// This is a relaxed atomic operation (no implied memory barriers).
+ ///
+ /// ATTENTION: The naming convention differs from C, where the corresponding
+ /// function is called `clear_bit`.
+ ///
+ /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than
+ /// or equal to `self.len()`, does nothing.
+ ///
+ /// # Panics
+ ///
+ /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than
+ /// or equal to `self.len()`.
+ #[inline]
+ pub fn clear_bit_atomic(&self, index: usize) {
+ bitmap_assert_return!(
+ index < self.len(),
+ "Bit `index` must be < {}, was {}",
+ self.len(),
+ index
+ );
+ // SAFETY: `index` is within bounds and the caller has ensured that
+ // there is no mix of non-atomic and atomic operations.
+ unsafe { bindings::clear_bit(index, self.as_ptr().cast_mut()) };
+ }
+
+ /// Copy `src` into this [`Bitmap`] and set any remaining bits to zero.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
+ /// use kernel::bitmap::BitmapVec;
+ ///
+ /// let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
+ ///
+ /// assert_eq!(None, long_bitmap.last_bit());
+ ///
+ /// let mut short_bitmap = BitmapVec::new(16, GFP_KERNEL)?;
+ ///
+ /// short_bitmap.set_bit(7);
+ /// long_bitmap.copy_and_extend(&short_bitmap);
+ /// assert_eq!(Some(7), long_bitmap.last_bit());
+ ///
+ /// # Ok::<(), AllocError>(())
+ /// ```
+ #[inline]
+ pub fn copy_and_extend(&mut self, src: &Bitmap) {
+ let len = core::cmp::min(src.len(), self.len());
+ // SAFETY: access to `self` and `src` is within bounds.
+ unsafe {
+ bindings::bitmap_copy_and_extend(
+ self.as_mut_ptr(),
+ src.as_ptr(),
+ len as u32,
+ self.len() as u32,
+ )
+ };
+ }
+
+ /// Finds last set bit.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use kernel::alloc::{AllocError, flags::GFP_KERNEL};
+ /// use kernel::bitmap::BitmapVec;
+ ///
+ /// let bitmap = BitmapVec::new(64, GFP_KERNEL)?;
+ ///
+ /// match bitmap.last_bit() {
+ /// Some(idx) => {
+ /// pr_info!("The last bit has index {idx}.\n");
+ /// }
+ /// None => {
+ /// pr_info!("All bits in this bitmap are 0.\n");
+ /// }
+ /// }
+ /// # Ok::<(), AllocError>(())
+ /// ```
+ #[inline]
+ pub fn last_bit(&self) -> Option<usize> {
+ // SAFETY: `_find_next_bit` access is within bounds due to invariant.
+ let index = unsafe { bindings::_find_last_bit(self.as_ptr(), self.len()) };
+ if index >= self.len() {
+ None
+ } else {
+ Some(index)
+ }
+ }
+
+ /// Finds next set bit, starting from `start`.
+ ///
+ /// Returns `None` if `start` is greater or equal to `self.nbits`.
+ #[inline]
+ pub fn next_bit(&self, start: usize) -> Option<usize> {
+ bitmap_assert!(
+ start < self.len(),
+ "`start` must be < {} was {}",
+ self.len(),
+ start
+ );
+ // SAFETY: `_find_next_bit` tolerates out-of-bounds arguments and returns a
+ // value larger than or equal to `self.len()` in that case.
+ let index = unsafe { bindings::_find_next_bit(self.as_ptr(), self.len(), start) };
+ if index >= self.len() {
+ None
+ } else {
+ Some(index)
+ }
+ }
+
+ /// Finds next zero bit, starting from `start`.
+ /// Returns `None` if `start` is greater than or equal to `self.len()`.
+ #[inline]
+ pub fn next_zero_bit(&self, start: usize) -> Option<usize> {
+ bitmap_assert!(
+ start < self.len(),
+ "`start` must be < {} was {}",
+ self.len(),
+ start
+ );
+ // SAFETY: `_find_next_zero_bit` tolerates out-of-bounds arguments and returns a
+ // value larger than or equal to `self.len()` in that case.
+ let index = unsafe { bindings::_find_next_zero_bit(self.as_ptr(), self.len(), start) };
+ if index >= self.len() {
+ None
+ } else {
+ Some(index)
+ }
+ }
+}
+
+use macros::kunit_tests;
+
+#[kunit_tests(rust_kernel_bitmap)]
+mod tests {
+ use super::*;
+ use kernel::alloc::flags::GFP_KERNEL;
+
+ #[test]
+ fn bitmap_borrow() {
+ let fake_bitmap: [usize; 2] = [0, 0];
+ // SAFETY: `fake_c_bitmap` is an array of expected length.
+ let b = unsafe { Bitmap::from_raw(fake_bitmap.as_ptr(), 2 * BITS_PER_LONG) };
+ assert_eq!(2 * BITS_PER_LONG, b.len());
+ assert_eq!(None, b.next_bit(0));
+ }
+
+ #[test]
+ fn bitmap_copy() {
+ let fake_bitmap: usize = 0xFF;
+ // SAFETY: `fake_c_bitmap` can be used as one-element array of expected length.
+ let b = unsafe { Bitmap::from_raw(core::ptr::addr_of!(fake_bitmap), 8) };
+ assert_eq!(8, b.len());
+ assert_eq!(None, b.next_zero_bit(0));
+ }
+
+ #[test]
+ fn bitmap_vec_new() -> Result<(), AllocError> {
+ let b = BitmapVec::new(0, GFP_KERNEL)?;
+ assert_eq!(0, b.len());
+
+ let b = BitmapVec::new(3, GFP_KERNEL)?;
+ assert_eq!(3, b.len());
+
+ let b = BitmapVec::new(1024, GFP_KERNEL)?;
+ assert_eq!(1024, b.len());
+
+ // Requesting too large values results in [`AllocError`].
+ let res = BitmapVec::new(1 << 31, GFP_KERNEL);
+ assert!(res.is_err());
+ Ok(())
+ }
+
+ #[test]
+ fn bitmap_set_clear_find() -> Result<(), AllocError> {
+ let mut b = BitmapVec::new(128, GFP_KERNEL)?;
+
+ // Zero-initialized
+ assert_eq!(None, b.next_bit(0));
+ assert_eq!(Some(0), b.next_zero_bit(0));
+ assert_eq!(None, b.last_bit());
+
+ b.set_bit(17);
+
+ assert_eq!(Some(17), b.next_bit(0));
+ assert_eq!(Some(17), b.next_bit(17));
+ assert_eq!(None, b.next_bit(18));
+ assert_eq!(Some(17), b.last_bit());
+
+ b.set_bit(107);
+
+ assert_eq!(Some(17), b.next_bit(0));
+ assert_eq!(Some(17), b.next_bit(17));
+ assert_eq!(Some(107), b.next_bit(18));
+ assert_eq!(Some(107), b.last_bit());
+
+ b.clear_bit(17);
+
+ assert_eq!(Some(107), b.next_bit(0));
+ assert_eq!(Some(107), b.last_bit());
+ Ok(())
+ }
+
+ #[test]
+ fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
+ // TODO: Kunit #[test]s do not support `cfg` yet,
+ // so we add it here in the body.
+ #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))]
+ {
+ let mut b = BitmapVec::new(128, GFP_KERNEL)?;
+ b.set_bit(2048);
+ b.set_bit_atomic(2048);
+ b.clear_bit(2048);
+ b.clear_bit_atomic(2048);
+ assert_eq!(None, b.next_bit(2048));
+ assert_eq!(None, b.next_zero_bit(2048));
+ assert_eq!(None, b.last_bit());
+ }
+ Ok(())
+ }
+
+ // TODO: uncomment once kunit supports [should_panic] and `cfg`.
+ // #[cfg(CONFIG_RUST_BITMAP_HARDENED)]
+ // #[test]
+ // #[should_panic]
+ // fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> {
+ // let mut b = BitmapVec::new(128, GFP_KERNEL)?;
+ //
+ // b.set_bit(2048);
+ // }
+
+ #[test]
+ fn bitmap_copy_and_extend() -> Result<(), AllocError> {
+ let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?;
+
+ long_bitmap.set_bit(3);
+ long_bitmap.set_bit(200);
+
+ let mut short_bitmap = BitmapVec::new(32, GFP_KERNEL)?;
+
+ short_bitmap.set_bit(17);
+
+ long_bitmap.copy_and_extend(&short_bitmap);
+
+ // Previous bits have been cleared.
+ assert_eq!(Some(17), long_bitmap.next_bit(0));
+ assert_eq!(Some(17), long_bitmap.last_bit());
+ Ok(())
+ }
+}