diff options
Diffstat (limited to 'rust/kernel/bitmap.rs')
-rw-r--r-- | rust/kernel/bitmap.rs | 600 |
1 files changed, 600 insertions, 0 deletions
diff --git a/rust/kernel/bitmap.rs b/rust/kernel/bitmap.rs new file mode 100644 index 000000000000..f45915694454 --- /dev/null +++ b/rust/kernel/bitmap.rs @@ -0,0 +1,600 @@ +// SPDX-License-Identifier: GPL-2.0 + +// Copyright (C) 2025 Google LLC. + +//! Rust API for bitmap. +//! +//! C headers: [`include/linux/bitmap.h`](srctree/include/linux/bitmap.h). + +use crate::alloc::{AllocError, Flags}; +use crate::bindings; +#[cfg(not(CONFIG_RUST_BITMAP_HARDENED))] +use crate::pr_err; +use core::ptr::NonNull; + +const BITS_PER_LONG: usize = bindings::BITS_PER_LONG as usize; + +/// Represents a C bitmap. Wraps underlying C bitmap API. +/// +/// # Invariants +/// +/// Must reference a `[c_ulong]` long enough to fit `data.len()` bits. +#[cfg_attr(CONFIG_64BIT, repr(align(8)))] +#[cfg_attr(not(CONFIG_64BIT), repr(align(4)))] +pub struct Bitmap { + data: [()], +} + +impl Bitmap { + /// Borrows a C bitmap. + /// + /// # Safety + /// + /// * `ptr` holds a non-null address of an initialized array of `unsigned long` + /// that is large enough to hold `nbits` bits. + /// * the array must not be freed for the lifetime of this [`Bitmap`] + /// * concurrent access only happens through atomic operations + pub unsafe fn from_raw<'a>(ptr: *const usize, nbits: usize) -> &'a Bitmap { + let data: *const [()] = core::ptr::slice_from_raw_parts(ptr.cast(), nbits); + // INVARIANT: `data` references an initialized array that can hold `nbits` bits. + // SAFETY: + // The caller guarantees that `data` (derived from `ptr` and `nbits`) + // points to a valid, initialized, and appropriately sized memory region + // that will not be freed for the lifetime 'a. + // We are casting `*const [()]` to `*const Bitmap`. The `Bitmap` + // struct is a ZST with a `data: [()]` field. This means its layout + // is compatible with a slice of `()`, and effectively it's a "thin pointer" + // (its size is 0 and alignment is 1). The `slice_from_raw_parts` + // function correctly encodes the length (number of bits, not elements) + // into the metadata of the fat pointer. Therefore, dereferencing this + // pointer as `&Bitmap` is safe given the caller's guarantees. + unsafe { &*(data as *const Bitmap) } + } + + /// Borrows a C bitmap exclusively. + /// + /// # Safety + /// + /// * `ptr` holds a non-null address of an initialized array of `unsigned long` + /// that is large enough to hold `nbits` bits. + /// * the array must not be freed for the lifetime of this [`Bitmap`] + /// * no concurrent access may happen. + pub unsafe fn from_raw_mut<'a>(ptr: *mut usize, nbits: usize) -> &'a mut Bitmap { + let data: *mut [()] = core::ptr::slice_from_raw_parts_mut(ptr.cast(), nbits); + // INVARIANT: `data` references an initialized array that can hold `nbits` bits. + // SAFETY: + // The caller guarantees that `data` (derived from `ptr` and `nbits`) + // points to a valid, initialized, and appropriately sized memory region + // that will not be freed for the lifetime 'a. + // Furthermore, the caller guarantees no concurrent access will happen, + // which upholds the exclusivity requirement for a mutable reference. + // Similar to `from_raw`, casting `*mut [()]` to `*mut Bitmap` is + // safe because `Bitmap` is a ZST with a `data: [()]` field, + // making its layout compatible with a slice of `()`. + unsafe { &mut *(data as *mut Bitmap) } + } + + /// Returns a raw pointer to the backing [`Bitmap`]. + pub fn as_ptr(&self) -> *const usize { + core::ptr::from_ref::<Bitmap>(self).cast::<usize>() + } + + /// Returns a mutable raw pointer to the backing [`Bitmap`]. + pub fn as_mut_ptr(&mut self) -> *mut usize { + core::ptr::from_mut::<Bitmap>(self).cast::<usize>() + } + + /// Returns length of this [`Bitmap`]. + #[expect(clippy::len_without_is_empty)] + pub fn len(&self) -> usize { + self.data.len() + } +} + +/// Holds either a pointer to array of `unsigned long` or a small bitmap. +#[repr(C)] +union BitmapRepr { + bitmap: usize, + ptr: NonNull<usize>, +} + +macro_rules! bitmap_assert { + ($cond:expr, $($arg:tt)+) => { + #[cfg(CONFIG_RUST_BITMAP_HARDENED)] + assert!($cond, $($arg)*); + } +} + +macro_rules! bitmap_assert_return { + ($cond:expr, $($arg:tt)+) => { + #[cfg(CONFIG_RUST_BITMAP_HARDENED)] + assert!($cond, $($arg)*); + + #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))] + if !($cond) { + pr_err!($($arg)*); + return + } + } +} + +/// Represents an owned bitmap. +/// +/// Wraps underlying C bitmap API. See [`Bitmap`] for available +/// methods. +/// +/// # Examples +/// +/// Basic usage +/// +/// ``` +/// use kernel::alloc::flags::GFP_KERNEL; +/// use kernel::bitmap::BitmapVec; +/// +/// let mut b = BitmapVec::new(16, GFP_KERNEL)?; +/// +/// assert_eq!(16, b.len()); +/// for i in 0..16 { +/// if i % 4 == 0 { +/// b.set_bit(i); +/// } +/// } +/// assert_eq!(Some(0), b.next_bit(0)); +/// assert_eq!(Some(1), b.next_zero_bit(0)); +/// assert_eq!(Some(4), b.next_bit(1)); +/// assert_eq!(Some(5), b.next_zero_bit(4)); +/// assert_eq!(Some(12), b.last_bit()); +/// # Ok::<(), Error>(()) +/// ``` +/// +/// # Invariants +/// +/// * `nbits` is `<= i32::MAX` and never changes. +/// * if `nbits <= bindings::BITS_PER_LONG`, then `repr` is a `usize`. +/// * otherwise, `repr` holds a non-null pointer to an initialized +/// array of `unsigned long` that is large enough to hold `nbits` bits. +pub struct BitmapVec { + /// Representation of bitmap. + repr: BitmapRepr, + /// Length of this bitmap. Must be `<= i32::MAX`. + nbits: usize, +} + +impl core::ops::Deref for BitmapVec { + type Target = Bitmap; + + fn deref(&self) -> &Bitmap { + let ptr = if self.nbits <= BITS_PER_LONG { + // SAFETY: Bitmap is represented inline. + unsafe { core::ptr::addr_of!(self.repr.bitmap) } + } else { + // SAFETY: Bitmap is represented as array of `unsigned long`. + unsafe { self.repr.ptr.as_ptr() } + }; + + // SAFETY: We got the right pointer and invariants of [`Bitmap`] hold. + // An inline bitmap is treated like an array with single element. + unsafe { Bitmap::from_raw(ptr, self.nbits) } + } +} + +impl core::ops::DerefMut for BitmapVec { + fn deref_mut(&mut self) -> &mut Bitmap { + let ptr = if self.nbits <= BITS_PER_LONG { + // SAFETY: Bitmap is represented inline. + unsafe { core::ptr::addr_of_mut!(self.repr.bitmap) } + } else { + // SAFETY: Bitmap is represented as array of `unsigned long`. + unsafe { self.repr.ptr.as_ptr() } + }; + + // SAFETY: We got the right pointer and invariants of [`BitmapVec`] hold. + // An inline bitmap is treated like an array with single element. + unsafe { Bitmap::from_raw_mut(ptr, self.nbits) } + } +} + +/// Enable ownership transfer to other threads. +/// +/// SAFETY: We own the underlying bitmap representation. +unsafe impl Send for BitmapVec {} + +/// Enable unsynchronized concurrent access to [`BitmapVec`] through shared references. +/// +/// SAFETY: `deref()` will return a reference to a [`Bitmap`]. Its methods +/// take immutable references are either atomic or read-only. +unsafe impl Sync for BitmapVec {} + +impl Drop for BitmapVec { + fn drop(&mut self) { + if self.nbits <= BITS_PER_LONG { + return; + } + // SAFETY: `self.ptr` was returned by the C `bitmap_zalloc`. + // + // INVARIANT: there is no other use of the `self.ptr` after this + // call and the value is being dropped so the broken invariant is + // not observable on function exit. + unsafe { bindings::bitmap_free(self.repr.ptr.as_ptr()) }; + } +} + +impl BitmapVec { + /// Constructs a new [`BitmapVec`]. + /// + /// Fails with [`AllocError`] when the [`BitmapVec`] could not be allocated. This + /// includes the case when `nbits` is greater than `i32::MAX`. + #[inline] + pub fn new(nbits: usize, flags: Flags) -> Result<Self, AllocError> { + if nbits <= BITS_PER_LONG { + return Ok(BitmapVec { + repr: BitmapRepr { bitmap: 0 }, + nbits, + }); + } + if nbits > i32::MAX.try_into().unwrap() { + return Err(AllocError); + } + let nbits_u32 = u32::try_from(nbits).unwrap(); + // SAFETY: `BITS_PER_LONG < nbits` and `nbits <= i32::MAX`. + let ptr = unsafe { bindings::bitmap_zalloc(nbits_u32, flags.as_raw()) }; + let ptr = NonNull::new(ptr).ok_or(AllocError)?; + // INVARIANT: `ptr` returned by C `bitmap_zalloc` and `nbits` checked. + Ok(BitmapVec { + repr: BitmapRepr { ptr }, + nbits, + }) + } + + /// Returns length of this [`Bitmap`]. + #[allow(clippy::len_without_is_empty)] + #[inline] + pub fn len(&self) -> usize { + self.nbits + } + + /// Fills this `Bitmap` with random bits. + #[cfg(CONFIG_FIND_BIT_BENCHMARK_RUST)] + pub fn fill_random(&mut self) { + // SAFETY: `self.as_mut_ptr` points to either an array of the + // appropriate length or one usize. + unsafe { + bindings::get_random_bytes( + self.as_mut_ptr().cast::<ffi::c_void>(), + usize::div_ceil(self.nbits, bindings::BITS_PER_LONG as usize) + * bindings::BITS_PER_LONG as usize + / 8, + ); + } + } +} + +impl Bitmap { + /// Set bit with index `index`. + /// + /// ATTENTION: `set_bit` is non-atomic, which differs from the naming + /// convention in C code. The corresponding C function is `__set_bit`. + /// + /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than + /// or equal to `self.nbits`, does nothing. + /// + /// # Panics + /// + /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than + /// or equal to `self.nbits`. + #[inline] + pub fn set_bit(&mut self, index: usize) { + bitmap_assert_return!( + index < self.len(), + "Bit `index` must be < {}, was {}", + self.len(), + index + ); + // SAFETY: Bit `index` is within bounds. + unsafe { bindings::__set_bit(index, self.as_mut_ptr()) }; + } + + /// Set bit with index `index`, atomically. + /// + /// This is a relaxed atomic operation (no implied memory barriers). + /// + /// ATTENTION: The naming convention differs from C, where the corresponding + /// function is called `set_bit`. + /// + /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than + /// or equal to `self.len()`, does nothing. + /// + /// # Panics + /// + /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than + /// or equal to `self.len()`. + #[inline] + pub fn set_bit_atomic(&self, index: usize) { + bitmap_assert_return!( + index < self.len(), + "Bit `index` must be < {}, was {}", + self.len(), + index + ); + // SAFETY: `index` is within bounds and the caller has ensured that + // there is no mix of non-atomic and atomic operations. + unsafe { bindings::set_bit(index, self.as_ptr().cast_mut()) }; + } + + /// Clear `index` bit. + /// + /// ATTENTION: `clear_bit` is non-atomic, which differs from the naming + /// convention in C code. The corresponding C function is `__clear_bit`. + /// + /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than + /// or equal to `self.len()`, does nothing. + /// + /// # Panics + /// + /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than + /// or equal to `self.len()`. + #[inline] + pub fn clear_bit(&mut self, index: usize) { + bitmap_assert_return!( + index < self.len(), + "Bit `index` must be < {}, was {}", + self.len(), + index + ); + // SAFETY: `index` is within bounds. + unsafe { bindings::__clear_bit(index, self.as_mut_ptr()) }; + } + + /// Clear `index` bit, atomically. + /// + /// This is a relaxed atomic operation (no implied memory barriers). + /// + /// ATTENTION: The naming convention differs from C, where the corresponding + /// function is called `clear_bit`. + /// + /// If CONFIG_RUST_BITMAP_HARDENED is not enabled and `index` is greater than + /// or equal to `self.len()`, does nothing. + /// + /// # Panics + /// + /// Panics if CONFIG_RUST_BITMAP_HARDENED is enabled and `index` is greater than + /// or equal to `self.len()`. + #[inline] + pub fn clear_bit_atomic(&self, index: usize) { + bitmap_assert_return!( + index < self.len(), + "Bit `index` must be < {}, was {}", + self.len(), + index + ); + // SAFETY: `index` is within bounds and the caller has ensured that + // there is no mix of non-atomic and atomic operations. + unsafe { bindings::clear_bit(index, self.as_ptr().cast_mut()) }; + } + + /// Copy `src` into this [`Bitmap`] and set any remaining bits to zero. + /// + /// # Examples + /// + /// ``` + /// use kernel::alloc::{AllocError, flags::GFP_KERNEL}; + /// use kernel::bitmap::BitmapVec; + /// + /// let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?; + /// + /// assert_eq!(None, long_bitmap.last_bit()); + /// + /// let mut short_bitmap = BitmapVec::new(16, GFP_KERNEL)?; + /// + /// short_bitmap.set_bit(7); + /// long_bitmap.copy_and_extend(&short_bitmap); + /// assert_eq!(Some(7), long_bitmap.last_bit()); + /// + /// # Ok::<(), AllocError>(()) + /// ``` + #[inline] + pub fn copy_and_extend(&mut self, src: &Bitmap) { + let len = core::cmp::min(src.len(), self.len()); + // SAFETY: access to `self` and `src` is within bounds. + unsafe { + bindings::bitmap_copy_and_extend( + self.as_mut_ptr(), + src.as_ptr(), + len as u32, + self.len() as u32, + ) + }; + } + + /// Finds last set bit. + /// + /// # Examples + /// + /// ``` + /// use kernel::alloc::{AllocError, flags::GFP_KERNEL}; + /// use kernel::bitmap::BitmapVec; + /// + /// let bitmap = BitmapVec::new(64, GFP_KERNEL)?; + /// + /// match bitmap.last_bit() { + /// Some(idx) => { + /// pr_info!("The last bit has index {idx}.\n"); + /// } + /// None => { + /// pr_info!("All bits in this bitmap are 0.\n"); + /// } + /// } + /// # Ok::<(), AllocError>(()) + /// ``` + #[inline] + pub fn last_bit(&self) -> Option<usize> { + // SAFETY: `_find_next_bit` access is within bounds due to invariant. + let index = unsafe { bindings::_find_last_bit(self.as_ptr(), self.len()) }; + if index >= self.len() { + None + } else { + Some(index) + } + } + + /// Finds next set bit, starting from `start`. + /// + /// Returns `None` if `start` is greater or equal to `self.nbits`. + #[inline] + pub fn next_bit(&self, start: usize) -> Option<usize> { + bitmap_assert!( + start < self.len(), + "`start` must be < {} was {}", + self.len(), + start + ); + // SAFETY: `_find_next_bit` tolerates out-of-bounds arguments and returns a + // value larger than or equal to `self.len()` in that case. + let index = unsafe { bindings::_find_next_bit(self.as_ptr(), self.len(), start) }; + if index >= self.len() { + None + } else { + Some(index) + } + } + + /// Finds next zero bit, starting from `start`. + /// Returns `None` if `start` is greater than or equal to `self.len()`. + #[inline] + pub fn next_zero_bit(&self, start: usize) -> Option<usize> { + bitmap_assert!( + start < self.len(), + "`start` must be < {} was {}", + self.len(), + start + ); + // SAFETY: `_find_next_zero_bit` tolerates out-of-bounds arguments and returns a + // value larger than or equal to `self.len()` in that case. + let index = unsafe { bindings::_find_next_zero_bit(self.as_ptr(), self.len(), start) }; + if index >= self.len() { + None + } else { + Some(index) + } + } +} + +use macros::kunit_tests; + +#[kunit_tests(rust_kernel_bitmap)] +mod tests { + use super::*; + use kernel::alloc::flags::GFP_KERNEL; + + #[test] + fn bitmap_borrow() { + let fake_bitmap: [usize; 2] = [0, 0]; + // SAFETY: `fake_c_bitmap` is an array of expected length. + let b = unsafe { Bitmap::from_raw(fake_bitmap.as_ptr(), 2 * BITS_PER_LONG) }; + assert_eq!(2 * BITS_PER_LONG, b.len()); + assert_eq!(None, b.next_bit(0)); + } + + #[test] + fn bitmap_copy() { + let fake_bitmap: usize = 0xFF; + // SAFETY: `fake_c_bitmap` can be used as one-element array of expected length. + let b = unsafe { Bitmap::from_raw(core::ptr::addr_of!(fake_bitmap), 8) }; + assert_eq!(8, b.len()); + assert_eq!(None, b.next_zero_bit(0)); + } + + #[test] + fn bitmap_vec_new() -> Result<(), AllocError> { + let b = BitmapVec::new(0, GFP_KERNEL)?; + assert_eq!(0, b.len()); + + let b = BitmapVec::new(3, GFP_KERNEL)?; + assert_eq!(3, b.len()); + + let b = BitmapVec::new(1024, GFP_KERNEL)?; + assert_eq!(1024, b.len()); + + // Requesting too large values results in [`AllocError`]. + let res = BitmapVec::new(1 << 31, GFP_KERNEL); + assert!(res.is_err()); + Ok(()) + } + + #[test] + fn bitmap_set_clear_find() -> Result<(), AllocError> { + let mut b = BitmapVec::new(128, GFP_KERNEL)?; + + // Zero-initialized + assert_eq!(None, b.next_bit(0)); + assert_eq!(Some(0), b.next_zero_bit(0)); + assert_eq!(None, b.last_bit()); + + b.set_bit(17); + + assert_eq!(Some(17), b.next_bit(0)); + assert_eq!(Some(17), b.next_bit(17)); + assert_eq!(None, b.next_bit(18)); + assert_eq!(Some(17), b.last_bit()); + + b.set_bit(107); + + assert_eq!(Some(17), b.next_bit(0)); + assert_eq!(Some(17), b.next_bit(17)); + assert_eq!(Some(107), b.next_bit(18)); + assert_eq!(Some(107), b.last_bit()); + + b.clear_bit(17); + + assert_eq!(Some(107), b.next_bit(0)); + assert_eq!(Some(107), b.last_bit()); + Ok(()) + } + + #[test] + fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> { + // TODO: Kunit #[test]s do not support `cfg` yet, + // so we add it here in the body. + #[cfg(not(CONFIG_RUST_BITMAP_HARDENED))] + { + let mut b = BitmapVec::new(128, GFP_KERNEL)?; + b.set_bit(2048); + b.set_bit_atomic(2048); + b.clear_bit(2048); + b.clear_bit_atomic(2048); + assert_eq!(None, b.next_bit(2048)); + assert_eq!(None, b.next_zero_bit(2048)); + assert_eq!(None, b.last_bit()); + } + Ok(()) + } + + // TODO: uncomment once kunit supports [should_panic] and `cfg`. + // #[cfg(CONFIG_RUST_BITMAP_HARDENED)] + // #[test] + // #[should_panic] + // fn owned_bitmap_out_of_bounds() -> Result<(), AllocError> { + // let mut b = BitmapVec::new(128, GFP_KERNEL)?; + // + // b.set_bit(2048); + // } + + #[test] + fn bitmap_copy_and_extend() -> Result<(), AllocError> { + let mut long_bitmap = BitmapVec::new(256, GFP_KERNEL)?; + + long_bitmap.set_bit(3); + long_bitmap.set_bit(200); + + let mut short_bitmap = BitmapVec::new(32, GFP_KERNEL)?; + + short_bitmap.set_bit(17); + + long_bitmap.copy_and_extend(&short_bitmap); + + // Previous bits have been cleared. + assert_eq!(Some(17), long_bitmap.next_bit(0)); + assert_eq!(Some(17), long_bitmap.last_bit()); + Ok(()) + } +} |