1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/pnode.c
*
* (C) Copyright IBM Corporation 2005.
* Author : Ram Pai (linuxram@us.ibm.com)
*/
#include <linux/mnt_namespace.h>
#include <linux/mount.h>
#include <linux/fs.h>
#include <linux/nsproxy.h>
#include <uapi/linux/mount.h>
#include "internal.h"
#include "pnode.h"
/* return the next shared peer mount of @p */
static inline struct mount *next_peer(struct mount *p)
{
return list_entry(p->mnt_share.next, struct mount, mnt_share);
}
static inline struct mount *first_slave(struct mount *p)
{
return hlist_entry(p->mnt_slave_list.first, struct mount, mnt_slave);
}
static inline struct mount *next_slave(struct mount *p)
{
return hlist_entry(p->mnt_slave.next, struct mount, mnt_slave);
}
static struct mount *get_peer_under_root(struct mount *mnt,
struct mnt_namespace *ns,
const struct path *root)
{
struct mount *m = mnt;
do {
/* Check the namespace first for optimization */
if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
return m;
m = next_peer(m);
} while (m != mnt);
return NULL;
}
/*
* Get ID of closest dominating peer group having a representative
* under the given root.
*
* Caller must hold namespace_sem
*/
int get_dominating_id(struct mount *mnt, const struct path *root)
{
struct mount *m;
for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
if (d)
return d->mnt_group_id;
}
return 0;
}
static inline bool will_be_unmounted(struct mount *m)
{
return m->mnt.mnt_flags & MNT_UMOUNT;
}
static struct mount *propagation_source(struct mount *mnt)
{
do {
struct mount *m;
for (m = next_peer(mnt); m != mnt; m = next_peer(m)) {
if (!will_be_unmounted(m))
return m;
}
mnt = mnt->mnt_master;
} while (mnt && will_be_unmounted(mnt));
return mnt;
}
static void transfer_propagation(struct mount *mnt, struct mount *to)
{
struct hlist_node *p = NULL, *n;
struct mount *m;
hlist_for_each_entry_safe(m, n, &mnt->mnt_slave_list, mnt_slave) {
m->mnt_master = to;
if (!to)
hlist_del_init(&m->mnt_slave);
else
p = &m->mnt_slave;
}
if (p)
hlist_splice_init(&mnt->mnt_slave_list, p, &to->mnt_slave_list);
}
/*
* EXCL[namespace_sem]
*/
void change_mnt_propagation(struct mount *mnt, int type)
{
struct mount *m = mnt->mnt_master;
if (type == MS_SHARED) {
set_mnt_shared(mnt);
return;
}
if (IS_MNT_SHARED(mnt)) {
m = propagation_source(mnt);
if (list_empty(&mnt->mnt_share)) {
mnt_release_group_id(mnt);
} else {
list_del_init(&mnt->mnt_share);
mnt->mnt_group_id = 0;
}
CLEAR_MNT_SHARED(mnt);
transfer_propagation(mnt, m);
}
hlist_del_init(&mnt->mnt_slave);
if (type == MS_SLAVE) {
mnt->mnt_master = m;
if (m)
hlist_add_head(&mnt->mnt_slave, &m->mnt_slave_list);
} else {
mnt->mnt_master = NULL;
if (type == MS_UNBINDABLE)
mnt->mnt_t_flags |= T_UNBINDABLE;
else
mnt->mnt_t_flags &= ~T_UNBINDABLE;
}
}
static struct mount *__propagation_next(struct mount *m,
struct mount *origin)
{
while (1) {
struct mount *master = m->mnt_master;
if (master == origin->mnt_master) {
struct mount *next = next_peer(m);
return (next == origin) ? NULL : next;
} else if (m->mnt_slave.next)
return next_slave(m);
/* back at master */
m = master;
}
}
/*
* get the next mount in the propagation tree.
* @m: the mount seen last
* @origin: the original mount from where the tree walk initiated
*
* Note that peer groups form contiguous segments of slave lists.
* We rely on that in get_source() to be able to find out if
* vfsmount found while iterating with propagation_next() is
* a peer of one we'd found earlier.
*/
static struct mount *propagation_next(struct mount *m,
struct mount *origin)
{
/* are there any slaves of this mount? */
if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list))
return first_slave(m);
return __propagation_next(m, origin);
}
static struct mount *skip_propagation_subtree(struct mount *m,
struct mount *origin)
{
/*
* Advance m past everything that gets propagation from it.
*/
struct mount *p = __propagation_next(m, origin);
while (p && peers(m, p))
p = __propagation_next(p, origin);
return p;
}
static struct mount *next_group(struct mount *m, struct mount *origin)
{
while (1) {
while (1) {
struct mount *next;
if (!IS_MNT_NEW(m) && !hlist_empty(&m->mnt_slave_list))
return first_slave(m);
next = next_peer(m);
if (m->mnt_group_id == origin->mnt_group_id) {
if (next == origin)
return NULL;
} else if (m->mnt_slave.next != &next->mnt_slave)
break;
m = next;
}
/* m is the last peer */
while (1) {
struct mount *master = m->mnt_master;
if (m->mnt_slave.next)
return next_slave(m);
m = next_peer(master);
if (master->mnt_group_id == origin->mnt_group_id)
break;
if (master->mnt_slave.next == &m->mnt_slave)
break;
m = master;
}
if (m == origin)
return NULL;
}
}
static bool need_secondary(struct mount *m, struct mountpoint *dest_mp)
{
/* skip ones added by this propagate_mnt() */
if (IS_MNT_NEW(m))
return false;
/* skip if mountpoint isn't visible in m */
if (!is_subdir(dest_mp->m_dentry, m->mnt.mnt_root))
return false;
/* skip if m is in the anon_ns */
if (is_anon_ns(m->mnt_ns))
return false;
return true;
}
static struct mount *find_master(struct mount *m,
struct mount *last_copy,
struct mount *original)
{
struct mount *p;
// ascend until there's a copy for something with the same master
for (;;) {
p = m->mnt_master;
if (!p || IS_MNT_MARKED(p))
break;
m = p;
}
while (!peers(last_copy, original)) {
struct mount *parent = last_copy->mnt_parent;
if (parent->mnt_master == p) {
if (!peers(parent, m))
last_copy = last_copy->mnt_master;
break;
}
last_copy = last_copy->mnt_master;
}
return last_copy;
}
/**
* propagate_mnt() - create secondary copies for tree attachment
* @dest_mnt: destination mount.
* @dest_mp: destination mountpoint.
* @source_mnt: source mount.
* @tree_list: list of secondaries to be attached.
*
* Create secondary copies for attaching a tree with root @source_mnt
* at mount @dest_mnt with mountpoint @dest_mp. Link all new mounts
* into a propagation graph. Set mountpoints for all secondaries,
* link their roots into @tree_list via ->mnt_hash.
*/
int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
struct mount *source_mnt, struct hlist_head *tree_list)
{
struct mount *m, *n, *copy, *this;
int err = 0, type;
if (dest_mnt->mnt_master)
SET_MNT_MARK(dest_mnt->mnt_master);
/* iterate over peer groups, depth first */
for (m = dest_mnt; m && !err; m = next_group(m, dest_mnt)) {
if (m == dest_mnt) { // have one for dest_mnt itself
copy = source_mnt;
type = CL_MAKE_SHARED;
n = next_peer(m);
if (n == m)
continue;
} else {
type = CL_SLAVE;
/* beginning of peer group among the slaves? */
if (IS_MNT_SHARED(m))
type |= CL_MAKE_SHARED;
n = m;
}
do {
if (!need_secondary(n, dest_mp))
continue;
if (type & CL_SLAVE) // first in this peer group
copy = find_master(n, copy, source_mnt);
this = copy_tree(copy, copy->mnt.mnt_root, type);
if (IS_ERR(this)) {
err = PTR_ERR(this);
break;
}
read_seqlock_excl(&mount_lock);
mnt_set_mountpoint(n, dest_mp, this);
read_sequnlock_excl(&mount_lock);
if (n->mnt_master)
SET_MNT_MARK(n->mnt_master);
copy = this;
hlist_add_head(&this->mnt_hash, tree_list);
err = count_mounts(n->mnt_ns, this);
if (err)
break;
type = CL_MAKE_SHARED;
} while ((n = next_peer(n)) != m);
}
hlist_for_each_entry(n, tree_list, mnt_hash) {
m = n->mnt_parent;
if (m->mnt_master)
CLEAR_MNT_MARK(m->mnt_master);
}
if (dest_mnt->mnt_master)
CLEAR_MNT_MARK(dest_mnt->mnt_master);
return err;
}
/*
* return true if the refcount is greater than count
*/
static inline int do_refcount_check(struct mount *mnt, int count)
{
return mnt_get_count(mnt) > count;
}
/**
* propagation_would_overmount - check whether propagation from @from
* would overmount @to
* @from: shared mount
* @to: mount to check
* @mp: future mountpoint of @to on @from
*
* If @from propagates mounts to @to, @from and @to must either be peers
* or one of the masters in the hierarchy of masters of @to must be a
* peer of @from.
*
* If the root of the @to mount is equal to the future mountpoint @mp of
* the @to mount on @from then @to will be overmounted by whatever is
* propagated to it.
*
* Context: This function expects namespace_lock() to be held and that
* @mp is stable.
* Return: If @from overmounts @to, true is returned, false if not.
*/
bool propagation_would_overmount(const struct mount *from,
const struct mount *to,
const struct mountpoint *mp)
{
if (!IS_MNT_SHARED(from))
return false;
if (to->mnt.mnt_root != mp->m_dentry)
return false;
for (const struct mount *m = to; m; m = m->mnt_master) {
if (peers(from, m))
return true;
}
return false;
}
/*
* check if the mount 'mnt' can be unmounted successfully.
* @mnt: the mount to be checked for unmount
* NOTE: unmounting 'mnt' would naturally propagate to all
* other mounts its parent propagates to.
* Check if any of these mounts that **do not have submounts**
* have more references than 'refcnt'. If so return busy.
*
* vfsmount lock must be held for write
*/
int propagate_mount_busy(struct mount *mnt, int refcnt)
{
struct mount *parent = mnt->mnt_parent;
/*
* quickly check if the current mount can be unmounted.
* If not, we don't have to go checking for all other
* mounts
*/
if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
return 1;
if (mnt == parent)
return 0;
for (struct mount *m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
struct list_head *head;
struct mount *child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
if (!child)
continue;
head = &child->mnt_mounts;
if (!list_empty(head)) {
/*
* a mount that covers child completely wouldn't prevent
* it being pulled out; any other would.
*/
if (!list_is_singular(head) || !child->overmount)
continue;
}
if (do_refcount_check(child, 1))
return 1;
}
return 0;
}
/*
* Clear MNT_LOCKED when it can be shown to be safe.
*
* mount_lock lock must be held for write
*/
void propagate_mount_unlock(struct mount *mnt)
{
struct mount *parent = mnt->mnt_parent;
struct mount *m, *child;
BUG_ON(parent == mnt);
for (m = propagation_next(parent, parent); m;
m = propagation_next(m, parent)) {
child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
if (child)
child->mnt.mnt_flags &= ~MNT_LOCKED;
}
}
static inline bool is_candidate(struct mount *m)
{
return m->mnt_t_flags & T_UMOUNT_CANDIDATE;
}
static void umount_one(struct mount *m, struct list_head *to_umount)
{
m->mnt.mnt_flags |= MNT_UMOUNT;
list_del_init(&m->mnt_child);
move_from_ns(m);
list_add_tail(&m->mnt_list, to_umount);
}
static void remove_from_candidate_list(struct mount *m)
{
m->mnt_t_flags &= ~(T_MARKED | T_UMOUNT_CANDIDATE);
list_del_init(&m->mnt_list);
}
static void gather_candidates(struct list_head *set,
struct list_head *candidates)
{
struct mount *m, *p, *q;
list_for_each_entry(m, set, mnt_list) {
if (is_candidate(m))
continue;
m->mnt_t_flags |= T_UMOUNT_CANDIDATE;
p = m->mnt_parent;
q = propagation_next(p, p);
while (q) {
struct mount *child = __lookup_mnt(&q->mnt,
m->mnt_mountpoint);
if (child) {
/*
* We might've already run into this one. That
* must've happened on earlier iteration of the
* outer loop; in that case we can skip those
* parents that get propagation from q - there
* will be nothing new on those as well.
*/
if (is_candidate(child)) {
q = skip_propagation_subtree(q, p);
continue;
}
child->mnt_t_flags |= T_UMOUNT_CANDIDATE;
if (!will_be_unmounted(child))
list_add(&child->mnt_list, candidates);
}
q = propagation_next(q, p);
}
}
list_for_each_entry(m, set, mnt_list)
m->mnt_t_flags &= ~T_UMOUNT_CANDIDATE;
}
/*
* We know that some child of @m can't be unmounted. In all places where the
* chain of descent of @m has child not overmounting the root of parent,
* the parent can't be unmounted either.
*/
static void trim_ancestors(struct mount *m)
{
struct mount *p;
for (p = m->mnt_parent; is_candidate(p); m = p, p = p->mnt_parent) {
if (IS_MNT_MARKED(m)) // all candidates beneath are overmounts
return;
SET_MNT_MARK(m);
if (m != p->overmount)
p->mnt_t_flags &= ~T_UMOUNT_CANDIDATE;
}
}
/*
* Find and exclude all umount candidates forbidden by @m
* (see Documentation/filesystems/propagate_umount.txt)
* If we can immediately tell that @m is OK to unmount (unlocked
* and all children are already committed to unmounting) commit
* to unmounting it.
* Only @m itself might be taken from the candidates list;
* anything found by trim_ancestors() is marked non-candidate
* and left on the list.
*/
static void trim_one(struct mount *m, struct list_head *to_umount)
{
bool remove_this = false, found = false, umount_this = false;
struct mount *n;
if (!is_candidate(m)) { // trim_ancestors() left it on list
remove_from_candidate_list(m);
return;
}
list_for_each_entry(n, &m->mnt_mounts, mnt_child) {
if (!is_candidate(n)) {
found = true;
if (n != m->overmount) {
remove_this = true;
break;
}
}
}
if (found) {
trim_ancestors(m);
} else if (!IS_MNT_LOCKED(m) && list_empty(&m->mnt_mounts)) {
remove_this = true;
umount_this = true;
}
if (remove_this) {
remove_from_candidate_list(m);
if (umount_this)
umount_one(m, to_umount);
}
}
static void handle_locked(struct mount *m, struct list_head *to_umount)
{
struct mount *cutoff = m, *p;
if (!is_candidate(m)) { // trim_ancestors() left it on list
remove_from_candidate_list(m);
return;
}
for (p = m; is_candidate(p); p = p->mnt_parent) {
remove_from_candidate_list(p);
if (!IS_MNT_LOCKED(p))
cutoff = p->mnt_parent;
}
if (will_be_unmounted(p))
cutoff = p;
while (m != cutoff) {
umount_one(m, to_umount);
m = m->mnt_parent;
}
}
/*
* @m is not to going away, and it overmounts the top of a stack of mounts
* that are going away. We know that all of those are fully overmounted
* by the one above (@m being the topmost of the chain), so @m can be slid
* in place where the bottom of the stack is attached.
*
* NOTE: here we temporarily violate a constraint - two mounts end up with
* the same parent and mountpoint; that will be remedied as soon as we
* return from propagate_umount() - its caller (umount_tree()) will detach
* the stack from the parent it (and now @m) is attached to. umount_tree()
* might choose to keep unmounted pieces stuck to each other, but it always
* detaches them from the mounts that remain in the tree.
*/
static void reparent(struct mount *m)
{
struct mount *p = m;
struct mountpoint *mp;
do {
mp = p->mnt_mp;
p = p->mnt_parent;
} while (will_be_unmounted(p));
mnt_change_mountpoint(p, mp, m);
mnt_notify_add(m);
}
/**
* propagate_umount - apply propagation rules to the set of mounts for umount()
* @set: the list of mounts to be unmounted.
*
* Collect all mounts that receive propagation from the mount in @set and have
* no obstacles to being unmounted. Add these additional mounts to the set.
*
* See Documentation/filesystems/propagate_umount.txt if you do anything in
* this area.
*
* Locks held:
* mount_lock (write_seqlock), namespace_sem (exclusive).
*/
void propagate_umount(struct list_head *set)
{
struct mount *m, *p;
LIST_HEAD(to_umount); // committed to unmounting
LIST_HEAD(candidates); // undecided umount candidates
// collect all candidates
gather_candidates(set, &candidates);
// reduce the set until it's non-shifting
list_for_each_entry_safe(m, p, &candidates, mnt_list)
trim_one(m, &to_umount);
// ... and non-revealing
while (!list_empty(&candidates)) {
m = list_first_entry(&candidates,struct mount, mnt_list);
handle_locked(m, &to_umount);
}
// now to_umount consists of all acceptable candidates
// deal with reparenting of remaining overmounts on those
list_for_each_entry(m, &to_umount, mnt_list) {
if (m->overmount)
reparent(m->overmount);
}
// and fold them into the set
list_splice_tail_init(&to_umount, set);
}
|