|
Following discussions in PR #16666, this commit updates the float
formatting code to improve the `repr` reversibility, i.e. the percentage of
valid floating point numbers that do parse back to the same number when
formatted by `repr` (in CPython it's 100%).
This new code offers a choice of 3 float conversion methods, depending on
the desired tradeoff between code size and conversion precision:
- BASIC method is the smallest code footprint
- APPROX method uses an iterative method to approximate the exact
representation, which is a bit slower but but does not have a big impact
on code size. It provides `repr` reversibility on >99.8% of the cases in
double precision, and on >98.5% in single precision (except with REPR_C,
where reversibility is 100% as the last two bits are not taken into
account).
- EXACT method uses higher-precision floats during conversion, which
provides perfect results but has a higher impact on code size. It is
faster than APPROX method, and faster than the CPython equivalent
implementation. It is however not available on all compilers when using
FLOAT_IMPL_DOUBLE.
Here is the table comparing the impact of the three conversion methods on
code footprint on PYBV10 (using single-precision floats) and reversibility
rate for both single-precision and double-precision floats. The table
includes current situation as a baseline for the comparison:
PYBV10 REPR_C FLOAT DOUBLE
current = 364688 12.9% 27.6% 37.9%
basic = 364812 85.6% 60.5% 85.7%
approx = 365080 100.0% 98.5% 99.8%
exact = 366408 100.0% 100.0% 100.0%
Signed-off-by: Yoctopuce dev <dev@yoctopuce.com>
|