summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path
AgeCommit message (Collapse)Author
7 daysTidyup truncate_useless_pathkeys() functionDavid Rowley
This removes a few static functions and replaces them with 2 functions which aim to be more reusable. The upper planner's pathkey requirements can be simplified down to operations which require pathkeys in the same order as the pathkeys for the given operation, and operations which can make use of a Path's pathkeys in any order. Here we also add some short-circuiting to truncate_useless_pathkeys(). At any point we discover that all pathkeys are useful to a single operation, we can stop checking the remaining operations as we're not going to be able to find any further useful pathkeys - they're all possibly useful already. Adjusting this seems to warrant trying to put the checks roughly in order of least-expensive-first so that the short-circuits have the most chance of skipping the more expensive checks. In passing clean up has_useful_pathkeys() as it seems to have grown a redundant check for group_pathkeys. This isn't needed as standard_qp_callback will set query_pathkeys if there's any requirement to have group_pathkeys. All this code does is waste run-time effort and take up needless space. Author: David Rowley <dgrowleyml@gmail.com> Reviewed-by: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Chao Li <li.evan.chao@gmail.com> Discussion: https://postgr.es/m/CAApHDvpbsEoTksvW5901MMoZo-hHf78E5up3uDOfkJnxDe_WAw@mail.gmail.com
12 daysRename apply_at to apply_agg_at for clarityRichard Guo
The field name "apply_at" in RelAggInfo was a bit ambiguous. Rename it to "apply_agg_at" to improve clarity and make its purpose clearer. Per complaint from David Rowley, Robert Haas. Suggested-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/CA+TgmoZ0KR2_XCWHy17=HHcQ3p2Mamc9c6Dnnhf1J6wPYFD9ng@mail.gmail.com
2025-10-09Make truncate_useless_pathkeys() consider WindowFuncsDavid Rowley
truncate_useless_pathkeys() seems to have neglected to account for PathKeys that might be useful for WindowClause evaluation. Modify it so that it properly accounts for that. Making this work required adjusting two things: 1. Change from checking query_pathkeys to check sort_pathkeys instead. 2. Add explicit check for window_pathkeys For #1, query_pathkeys gets set in standard_qp_callback() according to the sort order requirements for the first operation to be applied after the join planner is finished, so this changes depending on which upper planner operations a particular query needs. If the query has window functions and no GROUP BY, then query_pathkeys gets set to window_pathkeys. Before this change, this meant PathKeys useful for the ORDER BY were not accounted for in queries with window functions. Because of #1, #2 is now required so that we explicitly check to ensure we don't truncate away PathKeys useful for window functions. Author: David Rowley <dgrowleyml@gmail.com> Discussion: https://postgr.es/m/CAApHDvrj3HTKmXoLMbUjTO=_MNMxM=cnuCSyBKidAVibmYPnrg@mail.gmail.com
2025-10-08Implement Eager AggregationRichard Guo
Eager aggregation is a query optimization technique that partially pushes aggregation past a join, and finalizes it once all the relations are joined. Eager aggregation may reduce the number of input rows to the join and thus could result in a better overall plan. In the current planner architecture, the separation between the scan/join planning phase and the post-scan/join phase means that aggregation steps are not visible when constructing the join tree, limiting the planner's ability to exploit aggregation-aware optimizations. To implement eager aggregation, we collect information about aggregate functions in the targetlist and HAVING clause, along with grouping expressions from the GROUP BY clause, and store it in the PlannerInfo node. During the scan/join planning phase, this information is used to evaluate each base or join relation to determine whether eager aggregation can be applied. If applicable, we create a separate RelOptInfo, referred to as a grouped relation, to represent the partially-aggregated version of the relation and generate grouped paths for it. Grouped relation paths can be generated in two ways. The first method involves adding sorted and hashed partial aggregation paths on top of the non-grouped paths. To limit planning time, we only consider the cheapest or suitably-sorted non-grouped paths in this step. Alternatively, grouped paths can be generated by joining a grouped relation with a non-grouped relation. Joining two grouped relations is currently not supported. To further limit planning time, we currently adopt a strategy where partial aggregation is pushed only to the lowest feasible level in the join tree where it provides a significant reduction in row count. This strategy also helps ensure that all grouped paths for the same grouped relation produce the same set of rows, which is important to support a fundamental assumption of the planner. For the partial aggregation that is pushed down to a non-aggregated relation, we need to consider all expressions from this relation that are involved in upper join clauses and include them in the grouping keys, using compatible operators. This is essential to ensure that an aggregated row from the partial aggregation matches the other side of the join if and only if each row in the partial group does. This ensures that all rows within the same partial group share the same "destiny", which is crucial for maintaining correctness. One restriction is that we cannot push partial aggregation down to a relation that is in the nullable side of an outer join, because the NULL-extended rows produced by the outer join would not be available when we perform the partial aggregation, while with a non-eager-aggregation plan these rows are available for the top-level aggregation. Pushing partial aggregation in this case may result in the rows being grouped differently than expected, or produce incorrect values from the aggregate functions. If we have generated a grouped relation for the topmost join relation, we finalize its paths at the end. The final paths will compete in the usual way with paths built from regular planning. The patch was originally proposed by Antonin Houska in 2017. This commit reworks various important aspects and rewrites most of the current code. However, the original patch and reviews were very useful. Author: Richard Guo <guofenglinux@gmail.com> Author: Antonin Houska <ah@cybertec.at> (in an older version) Reviewed-by: Robert Haas <robertmhaas@gmail.com> Reviewed-by: Jian He <jian.universality@gmail.com> Reviewed-by: Tender Wang <tndrwang@gmail.com> Reviewed-by: Matheus Alcantara <matheusssilv97@gmail.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: David Rowley <dgrowleyml@gmail.com> Reviewed-by: Tomas Vondra <tomas@vondra.me> (in an older version) Reviewed-by: Andy Fan <zhihuifan1213@163.com> (in an older version) Reviewed-by: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com> (in an older version) Discussion: https://postgr.es/m/CAMbWs48jzLrPt1J_00ZcPZXWUQKawQOFE8ROc-ADiYqsqrpBNw@mail.gmail.com
2025-10-07Assign each subquery a unique name prior to planning it.Robert Haas
Previously, subqueries were given names only after they were planned, which makes it difficult to use information from a previous execution of the query to guide future planning. If, for example, you knew something about how you want "InitPlan 2" to be planned, you won't know whether the subquery you're currently planning will end up being "InitPlan 2" until after you've finished planning it, by which point it's too late to use the information that you had. To fix this, assign each subplan a unique name before we begin planning it. To improve consistency, use textual names for all subplans, rather than, as we did previously, a mix of numbers (such as "InitPlan 1") and names (such as "CTE foo"), and make sure that the same name is never assigned more than once. We adopt the somewhat arbitrary convention of using the type of sublink to set the plan name; for example, a query that previously had two expression sublinks shown as InitPlan 2 and InitPlan 1 will now end up named expr_1 and expr_2. Because names are assigned before rather than after planning, some of the regression test outputs show the numerical part of the name switching positions: what was previously SubPlan 2 was actually the first one encountered, but we finished planning it later. We assign names even to subqueries that aren't shown as such within the EXPLAIN output. These include subqueries that are a FROM clause item or a branch of a set operation, rather than something that will be turned into an InitPlan or SubPlan. The purpose of this is to make sure that, below the topmost query level, there's always a name for each subquery that is stable from one planning cycle to the next (assuming no changes to the query or the database schema). Author: Robert Haas <rhaas@postgresql.org> Co-authored-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: Alexandra Wang <alexandra.wang.oss@gmail.com> Reviewed-by: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: Junwang Zhao <zhjwpku@gmail.com> Discussion: http://postgr.es/m/3641043.1758751399@sss.pgh.pa.us
2025-10-05Don't include access/htup_details.h in executor/tuptable.hÁlvaro Herrera
This is not at all needed; I suspect it was a simple mistake in commit 5408e233f066. It causes htup_details.h to bleed into a huge number of places via execnodes.h. Remove it and fix fallout. Discussion: https://postgr.es/m/202510021240.ptc2zl5cvwen@alvherre.pgsql
2025-09-30Remove unused parameter from find_window_run_conditions()David Rowley
... and check_and_push_window_quals(). Similar to 4be9024d5, but it seems there was yet another unused parameter. Author: Matheus Alcantara <matheusssilv97@gmail.com> Discussion: https://postgr.es/m/DD5BEKORUG34.2M8492NMB9DB8@gmail.com
2025-09-26Remove unused parameter from check_and_push_window_qualsDavid Rowley
... and find_window_run_conditions. This seems to have been around and unused ever since the Run Condition feature was added in 9d9c02ccd. Let's remove it to clean things up a bit. Author: Matheus Alcantara <matheusssilv97@gmail.com> Discussion: https://postgr.es/m/DD26NJ0Y34ZS.2ZOJPHSY12PFI@gmail.com
2025-09-20Re-allow using statistics for bool-valued functions in WHERE.Tom Lane
Commit a391ff3c3, which added the ability for a function's support function to provide a custom selectivity estimate for "WHERE f(...)", unintentionally removed the possibility of applying expression statistics after finding there's no applicable support function. That happened because we no longer fell through to boolvarsel() as before. Refactor to do so again, putting the 0.3333333 default back into boolvarsel() where it had been (cf. commit 39df0f150). I surely wouldn't have made this error if 39df0f150 had included a test case, so add one now. At the time we did not have the "extended statistics" infrastructure, but we do now, and it is also unable to work in this scenario because of this error. So make use of that for the test case. This is very clearly a bug fix, but I'm afraid to put it into released branches because of the likelihood of altering plan choices, which we avoid doing in minor releases. So, master only. Reported-by: Frédéric Yhuel <frederic.yhuel@dalibo.com> Author: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/a8b99dce-1bfb-4d97-af73-54a32b85c916@dalibo.com
2025-09-19Improve wording in a few commentsDavid Rowley
Initially this was to fix the "catched" typo, but I (David) wasn't quite clear on what the previous comment meant about being "effective". I expect this means efficiency, so I've reworded the comment to indicate that. While this is only a comment fixup, for the sake of possibly minimizing possible future backpatching pain, I've opted to backpatch to 18 since this code is new to that version and the release isn't out the door yet. Author: Tender Wang <tndrwang@gmail.com> Discussion: https://postgr.es/m/CAHewXNmSYWPud1sfBvpKbCJeRkWeZYuqatxtV9U9LvAFXBEiBw@mail.gmail.com Backpatch-through: 18
2025-09-03Fix planner error when estimating SubPlan costRichard Guo
SubPlan nodes are typically built very early, before any RelOptInfos have been constructed for the parent query level. As a result, the simple_rel_array in the parent root has not yet been initialized. Currently, during cost estimation of a SubPlan's testexpr, we may call examine_variable() to look up statistical data about the expressions. This can lead to "no relation entry for relid" errors. To fix, pass root as NULL to cost_qual_eval() in cost_subplan(), since the root does not yet contain enough information to safely consult statistics. One exception is SubPlan nodes built for the initplans of MIN/MAX aggregates from indexes. In this case, having a NULL root is safe because testexpr will be NULL. Additionally, an initplan will by definition not consult anything from the parent plan. Backpatch to all supported branches. Although the reported call path that triggers this error is not reachable prior to v17, there's no guarantee that other code paths -- especially in extensions -- could not encounter the same issue when cost_qual_eval() is called with a root that lacks a valid simple_rel_array. The test case is not included in pre-v17 branches though. Bug: #19037 Reported-by: Alexander Lakhin <exclusion@gmail.com> Diagnosed-by: Tom Lane <tgl@sss.pgh.pa.us> Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/19037-3d1c7bb553c7ce84@postgresql.org Backpatch-through: 13
2025-08-19Simplify relation_has_unique_index_for()Richard Guo
Now that the only call to relation_has_unique_index_for() that supplied an exprlist and oprlist has been removed, the loop handling those lists is effectively dead code. This patch removes that loop and simplifies the function accordingly. Author: Richard Guo <guofenglinux@gmail.com> Discussion: https://postgr.es/m/CAMbWs4-EBnaRvEs7frTLbsXiweSTUXifsteF-d3rvv01FKO86w@mail.gmail.com
2025-08-19Pathify RHS unique-ification for semijoin planningRichard Guo
There are two implementation techniques for semijoins: one uses the JOIN_SEMI jointype, where the executor emits at most one matching row per left-hand side (LHS) row; the other unique-ifies the right-hand side (RHS) and then performs a plain inner join. The latter technique currently has some drawbacks related to the unique-ification step. * Only the cheapest-total path of the RHS is considered during unique-ification. This may cause us to miss some optimization opportunities; for example, a path with a better sort order might be overlooked simply because it is not the cheapest in total cost. Such a path could help avoid a sort at a higher level, potentially resulting in a cheaper overall plan. * We currently rely on heuristics to choose between hash-based and sort-based unique-ification. A better approach would be to generate paths for both methods and allow add_path() to decide which one is preferable, consistent with how path selection is handled elsewhere in the planner. * In the sort-based implementation, we currently pay no attention to the pathkeys of the input subpath or the resulting output. This can result in redundant sort nodes being added to the final plan. This patch improves semijoin planning by creating a new RelOptInfo for the RHS rel to represent its unique-ified version. It then generates multiple paths that represent elimination of distinct rows from the RHS, considering both a hash-based implementation using the cheapest total path of the original RHS rel, and sort-based implementations that either exploit presorted input paths or explicitly sort the cheapest total path. All resulting paths compete in add_path(), and those deemed worthy of consideration are added to the new RelOptInfo. Finally, the unique-ified rel is joined with the other side of the semijoin using a plain inner join. As a side effect, most of the code related to the JOIN_UNIQUE_OUTER and JOIN_UNIQUE_INNER jointypes -- used to indicate that the LHS or RHS path should be made unique -- has been removed. Besides, the T_Unique path now has the same meaning for both semijoins and upper DISTINCT clauses: it represents adjacent-duplicate removal on presorted input. This patch unifies their handling by sharing the same data structures and functions. This patch also removes the UNIQUE_PATH_NOOP related code along the way, as it is dead code -- if the RHS rel is provably unique, the semijoin should have already been simplified to a plain inner join by analyzejoins.c. Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Alexandra Wang <alexandra.wang.oss@gmail.com> Reviewed-by: wenhui qiu <qiuwenhuifx@gmail.com> Discussion: https://postgr.es/m/CAMbWs4-EBnaRvEs7frTLbsXiweSTUXifsteF-d3rvv01FKO86w@mail.gmail.com
2025-07-29Display Memoize planner estimates in EXPLAINDavid Rowley
There've been a few complaints that it can be overly difficult to figure out why the planner picked a Memoize plan. To help address that, here we adjust the EXPLAIN output to display the following additional details: 1) The estimated number of cache entries that can be stored at once 2) The estimated number of unique lookup keys that we expect to see 3) The number of lookups we expect 4) The estimated hit ratio Technically #4 can be calculated using #1, #2 and #3, but it's not a particularly obvious calculation, so we opt to display it explicitly. The original patch by Lukas Fittl only displayed the hit ratio, but there was a fear that might lead to more questions about how that was calculated. The idea with displaying all 4 is to be transparent which may allow queries to be tuned more easily. For example, if #2 isn't correct then maybe extended statistics or a manual n_distinct estimate can be used to help fix poor plan choices. Author: Ilia Evdokimov <ilya.evdokimov@tantorlabs.com> Author: Lukas Fittl <lukas@fittl.com> Reviewed-by: David Rowley <dgrowleyml@gmail.com> Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Robert Haas <robertmhaas@gmail.com> Discussion: https://postgr.es/m/CAP53Pky29GWAVVk3oBgKBDqhND0BRBN6yTPeguV_qSivFL5N_g%40mail.gmail.com
2025-07-08Consider explicit incremental sort for Append and MergeAppendRichard Guo
For an ordered Append or MergeAppend, we need to inject an explicit sort into any subpath that is not already well enough ordered. Currently, only explicit full sorts are considered; incremental sorts are not yet taken into account. In this patch, for subpaths of an ordered Append or MergeAppend, we choose to use explicit incremental sort if it is enabled and there are presorted keys. The rationale is based on the assumption that incremental sort is always faster than full sort when there are presorted keys, a premise that has been applied in various parts of the code. In addition, the current cost model tends to favor incremental sort as being cheaper than full sort in the presence of presorted keys, making it reasonable not to consider full sort in such cases. No backpatch as this could result in plan changes. Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Robert Haas <robertmhaas@gmail.com> Discussion: https://postgr.es/m/CAMbWs4_V7a2enTR+T3pOY_YZ-FU8ZsFYym2swOz4jNMqmSgyuw@mail.gmail.com
2025-07-03Enable use of Memoize for ANTI joinsRichard Guo
Currently, we do not support Memoize for SEMI and ANTI joins because nested loop SEMI/ANTI joins do not scan the inner relation to completion, which prevents Memoize from marking the cache entry as complete. One might argue that we could mark the cache entry as complete after fetching the first inner tuple, but that would not be safe: if the first inner tuple and the current outer tuple do not satisfy the join clauses, a second inner tuple matching the parameters would find the cache entry already marked as complete. However, if the inner side is provably unique, this issue doesn't arise, since there would be no second matching tuple. That said, this doesn't help in the case of SEMI joins, because a SEMI join with a provably unique inner side would already have been reduced to an inner join by reduce_unique_semijoins. Therefore, in this patch, we check whether the inner relation is provably unique for ANTI joins and enable the use of Memoize in such cases. Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: wenhui qiu <qiuwenhuifx@gmail.com> Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Discussion: https://postgr.es/m/CAMbWs48FdLiMNrmJL-g6mDvoQVt0yNyJAqMkv4e2Pk-5GKCZLA@mail.gmail.com
2025-06-20Remove planner's have_dangerous_phv() join-order restriction.Tom Lane
Commit 85e5e222b, which added (a forerunner of) this logic, argued that Adding the necessary complexity to make this work doesn't seem like it would be repaid in significantly better plans, because in cases where such a PHV exists, there is probably a corresponding join order constraint that would allow a good plan to be found without using the star-schema exception. The flaw in this claim is that there may be other join-order restrictions that prevent us from finding a join order that doesn't involve a "dangerous" PHV. In particular we now recognize that small join_collapse_limit or from_collapse_limit could prevent it. Therefore, let's bite the bullet and make the case work. We don't have to extend the executor's support for nestloop parameters as I thought at the time, because we can instead push the evaluation of the placeholder's expression into the left-hand input of the NestLoop node. So there's not really a lot of downside to this solution, and giving the planner more join-order flexibility should have value beyond just avoiding failure. Having said that, there surely is a nonzero risk of introducing new bugs. Since this failure mode escaped detection for ten years, such cases don't seem common enough to justify a lot of risk. Therefore, let's put this fix into master but leave the back branches alone (for now anyway). Bug: #18953 Reported-by: Alexander Lakhin <exclusion@gmail.com> Diagnosed-by: Richard Guo <guofenglinux@gmail.com> Author: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/18953-1c9883a9d4afeb30@postgresql.org
2025-05-18Fix tuple_fraction calculation in generate_orderedappend_paths()Alexander Korotkov
6b94e7a6da adjusted generate_orderedappend_paths() to consider fractional paths. However, it didn't manage to interpret the tuple_fraction value correctly. According to the header comment of grouping_planner(), the tuple_fraction >= 1 specifies the absolute number of expected tuples. That number must be divided by the expected total number of tuples to get the actual fraction. Even though this is a bug fix, we don't backpatch it. The risks of the side effects of plan changes on stable branches are too high. Reported-by: Andrei Lepikhov <lepihov@gmail.com> Discussion: https://postgr.es/m/3ca271fa-ca5c-458c-8934-eb148622b270%40gmail.com Author: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Junwang Zhao <zhjwpku@gmail.com> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
2025-05-08Track the number of presorted outer pathkeys in MergePathRichard Guo
When creating an explicit Sort node for the outer path of a mergejoin, we need to determine the number of presorted keys of the outer path to decide whether explicit incremental sort can be applied. Currently, this is done by repeatedly calling pathkeys_count_contained_in. This patch caches the number of presorted outer pathkeys in MergePath, allowing us to save several calls to pathkeys_count_contained_in. It can be considered a complement to the changes in commit 828e94c9d. Reported-by: David Rowley <dgrowleyml@gmail.com> Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Tender Wang <tndrwang@gmail.com> Discussion: https://postgr.es/m/CAApHDvqvBireB_w6x8BN5txdvBEHxVgZBt=rUnpf5ww5P_E_ww@mail.gmail.com
2025-04-16Fix an incorrect check in get_memoize_pathRichard Guo
Memoize typically marks cache entries as complete after fully scanning the inner side of a join. However, in the case of unique joins, we skip to the next outer tuple as soon as the first matching inner tuple is found, leaving no opportunity to scan the inner side to completion. To work around that, we mark cache entries as complete after fetching the first matching inner tuple in unique joins. This approach is only safe when all of the join's restriction clauses are parameterized; otherwise, there is no guarantee that reading just one tuple from the inner side is sufficient. Currently, we check for this by verifying that the number of clauses in ppi_clauses is no less than the number of the join's restriction clauses. However, this check isn't entirely reliable, as ppi_clauses includes join clauses available from all outer rels, not just the current outer rel. This means the check could pass even if a restriction clause isn't parameterized, as long as another join clause, which doesn't belong to the current join, is included in ppi_clauses. To fix this, we explicitly check whether each restriction clause of the current join is present in ppi_clauses. While we're here, remove the XXX comment from the modified code, as it's not justified; in certain cases, it's not possible to move a join clause to the inner side. This is arguably a bugfix, but no backpatch given the lack of field reports. Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: wenhui qiu <qiuwenhuifx@gmail.com> Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Discussion: https://postgr.es/m/CAMbWs4-8JPouj=wBDj4DhK-WO4+Xdx=A2jbjvvyyTBQneJ1=BQ@mail.gmail.com
2025-04-08Speedup child EquivalenceMember lookup in plannerDavid Rowley
When planning queries to partitioned tables, we clone all EquivalenceMembers belonging to the partitioned table into em_is_child EquivalenceMembers for each non-pruned partition. For partitioned tables with large numbers of partitions, this meant the ec_members list could become large and code searching that list would become slow. Effectively, the more partitions which were present, the more searches needed to be performed for operations such as find_ec_member_matching_expr() during create_plan() and the more partitions present, the longer these searches would take, i.e., a quadratic slowdown. To fix this, here we adjust how we store EquivalenceMembers for em_is_child members. Instead of storing these directly in ec_members, these are now stored in a new array of Lists in the EquivalenceClass, which is indexed by the relid. When we want to find EquivalenceMembers belonging to a certain child relation, we can narrow the search to the array element for that relation. To make EquivalenceMember lookup easier and to reduce the amount of code change, this commit provides a pair of functions to allow iteration over the EquivalenceMembers of an EC which also handles finding the child members, if required. Callers that never need to look at child members can remain using the foreach loop over ec_members, which will now often be faster due to only parent-level members being stored there. The actual performance increases here are highly dependent on the number of partitions and the query being planned. Performance increases can be visible with as few as 8 partitions, but the speedup is marginal for such low numbers of partitions. The speedups become much more visible with a few dozen to hundreds of partitions. With some tested queries using 56 partitions, the planner was around 3x faster than before. For use cases with thousands of partitions, these are likely to become significantly faster. Some testing has shown planner speedups of 60x or more with 8192 partitions. Author: Yuya Watari <watari.yuya@gmail.com> Co-authored-by: David Rowley <dgrowleyml@gmail.com> Reviewed-by: David Rowley <dgrowleyml@gmail.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: Andrey Lepikhov <a.lepikhov@postgrespro.ru> Reviewed-by: Alena Rybakina <lena.ribackina@yandex.ru> Reviewed-by: Dmitry Dolgov <9erthalion6@gmail.com> Reviewed-by: Amit Langote <amitlangote09@gmail.com> Reviewed-by: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com> Tested-by: Thom Brown <thom@linux.com> Tested-by: newtglobal postgresql_contributors <postgresql_contributors@newtglobalcorp.com> Discussion: https://postgr.es/m/CAJ2pMkZNCgoUKSE%2B_5LthD%2BKbXKvq6h2hQN8Esxpxd%2Bcxmgomg%40mail.gmail.com
2025-04-06Relax ordering-related hardcoded btree requirements in planningPeter Eisentraut
There were several places in ordering-related planning where a requirement for btree was hardcoded but an amcanorder index could suffice. This fixes that. We just need to do the necessary mapping between strategy numbers and compare types and adjust some related APIs so that this works independent of btree strategy numbers. For instance, non-btree amcanorder indexes can now be used to support sorting and merge joins. Also, predtest.c works independent of btree strategy numbers now. To avoid performance regressions, some details on btree and other built-in index types are still hardcoded as shortcuts, but other index types now have access to the same features by providing the required flags and callbacks. Author: Mark Dilger <mark.dilger@enterprisedb.com> Co-authored-by: Peter Eisentraut <peter@eisentraut.org> Discussion: https://www.postgresql.org/message-id/flat/E72EAA49-354D-4C2E-8EB9-255197F55330@enterprisedb.com
2025-04-04Extract make_SAOP_expr() function from match_orclause_to_indexcol()Alexander Korotkov
This commit extracts the code to generate ScalarArrayOpExpr on top of the list of expressions from match_orclause_to_indexcol() into a separate function make_SAOP_expr(). This function was extracted to be used in optimization for conversion of 'x IN (VALUES ...)' to 'x = ANY ...'. make_SAOP_expr() is placed in clauses.c file as only two additional headers were needed there compared with other places. Discussion: https://postgr.es/m/0184212d-1248-4f1f-a42d-f5cb1c1976d2%40tantorlabs.com Author: Alena Rybakina <a.rybakina@postgrespro.ru> Author: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Ivan Kush <ivan.kush@tantorlabs.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com>
2025-04-04Convert PathKey to use CompareTypePeter Eisentraut
Change the PathKey struct to use CompareType to record the sort direction instead of hardcoding btree strategy numbers. The CompareType is then converted to the index-type-specific strategy when the plan is created. This reduces the number of places btree strategy numbers are hardcoded, and it's a self-contained subset of a larger effort to allow non-btree indexes to behave like btrees. Author: Mark Dilger <mark.dilger@enterprisedb.com> Co-authored-by: Peter Eisentraut <peter@eisentraut.org> Discussion: https://www.postgresql.org/message-id/flat/E72EAA49-354D-4C2E-8EB9-255197F55330@enterprisedb.com
2025-04-04Make derived clause lookup in EquivalenceClass more efficientAmit Langote
Derived clauses are stored in ec_derives, a List of RestrictInfos. These clauses are later looked up by matching the left and right EquivalenceMembers along with the clause's parent EC. This linear search becomes expensive in queries with many joins or partitions, where ec_derives may contain thousands of entries. In particular, create_join_clause() can spend significant time scanning this list. To improve performance, introduce a hash table (ec_derives_hash) that is built when the list reaches 32 entries -- the same threshold used for join_rel_hash. The original list is retained alongside the hash table to support EC merging and serialization (_outEquivalenceClass()). Each clause is stored in the hash table using a canonicalized key: the EquivalenceMember with the lower memory address is placed in the key before the one with the higher memory address. This avoids storing or searching for both permutations of the same clause. For clauses involving a constant EM, the key places NULL in the first slot and the non-constant EM in the second. The hash table is initialized using list_length(ec_derives_list) as the size hint. simplehash internally adjusts this to the next power of two after dividing by the fillfactor, so this typically results in at least 64 buckets near the threshold -- avoiding immediate resizing while adapting to the actual number of entries. The lookup logic for derived clauses is now centralized in ec_search_derived_clause_for_ems(), which consults the hash table when available and falls back to the list otherwise. The new ec_clear_derived_clauses() always frees ec_derives_list, even though some of the original code paths that cleared the old ec_derives field did not. This ensures consistent cleanup and avoids leaking memory when large lists are discarded. An assertion originally placed in find_derived_clause_for_ec_member() is moved into ec_search_derived_clause_for_ems() so that it is enforced consistently, regardless of whether the hash table or list is used for lookup. This design incorporates suggestions by David Rowley, who proposed both the key canonicalization and the initial sizing approach to balance memory usage and CPU efficiency. Author: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com> Reviewed-by: Amit Langote <amitlangote09@gmail.com> Reviewed-by: David Rowley <dgrowleyml@gmail.com> Tested-by: Dmitry Dolgov <9erthalion6@gmail.com> Tested-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Tested-by: Amit Langote <amitlangote09@gmail.com> Tested-by: David Rowley <dgrowleyml@gmail.com> Discussion: https://postgr.es/m/CAExHW5vZiQtWU6moszLP5iZ8gLX_ZAUbgEX0DxGLx9PGWCtqUg@mail.gmail.com
2025-04-04Add assertion to verify derived clause has constant RHSAmit Langote
find_derived_clause_for_ec_member() searches for a previously-derived clause that equates a non-constant EquivalenceMember to a constant. It is only called for EquivalenceClasses with ec_has_const set, and with a non-constant member the EquivalenceMember to search for. The matched clause is expected to have the non-constant member on the left-hand side and the constant EquivalenceMember on the right. Assert that the RHS is indeed a constant, to catch violations of this structure and enforce assumptions made by generate_base_implied_equalities_const(). Author: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com> Reviewed-by: Amit Langote <amitlangote09@gmail.com> Discussion: https://postgr.es/m/CAExHW5scMxyFRqOFE6ODmBiW2rnVBEmeEcA-p4W_CyuEikURdA@mail.gmail.com
2025-03-28Make group_similar_or_args() reorder clause list as little as possibleAlexander Korotkov
Currently, group_similar_or_args() permutes original positions of clauses independently on whether it manages to find any groups of similar clauses. While we are not providing any strict warranties on saving the original order of OR-clauses, it is preferred that the original order be modified as little as possible. This commit changes the reordering algorithm of group_similar_or_args() in the following way. We reorder each group of similar clauses so that the first item of the group stays in place, but all the other items are moved after it. So, if there are no similar clauses, the order of clauses stays the same. When there are some groups, only required reordering happens while the rest of the clauses remain in their places. Reported-by: Andrei Lepikhov <lepihov@gmail.com> Discussion: https://postgr.es/m/3ac7c436-81e1-4191-9caf-b0dd70b51511%40gmail.com Reviewed-by: Pavel Borisov <pashkin.elfe@gmail.com> Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Alena Rybakina <a.rybakina@postgrespro.ru>
2025-03-20Revert workarounds for -Wmissing-braces false positives on old GCCPeter Eisentraut
We have collected several instances of a workaround for GCC bug 53119, which caused false-positive compiler warnings. This bug has long been fixed, but was still seen on the buildfarm, most recently on lapwing with gcc (Debian 4.7.2-5). (The GCC bug tracker mentions that a fix was backported to 4.7.4 and 4.8.3.) That compiler no longer runs warning-free since commit 6fdd5d95634, so we don't need to keep these workarounds. And furthermore, the consensus appears to be that we don't want to keep supporting that era of platform anymore at all. This reverts the following commits: d937904cce6a3d82e4f9c2127de7b59105a134b3 506428d091760650971433f6bc083531c307b368 b449afb582bb9015bfbb85abc10ce122aef9ec70 6392f2a0968c20ecde4d27b6652703ad931fce92 bad0763a4d7be3005eae35d460c73ac4bc7ebaad 5e0c761d0a13c7b4f7c5de618ac38560d74d74d0 and makes a few similar fixes to newer code. Discussion: https://www.postgresql.org/message-id/flat/e170d61f-01ab-4cf9-ab68-91cd1fac62c5%40eisentraut.org Discussion: https://www.postgresql.org/message-id/flat/CA%2BTgmoYEAm-KKZibAP3hSqbTFTjUd47XtVcf3xSFDpyecXX9uQ%40mail.gmail.com
2025-03-10Use extended stats for precise estimation of bucket size in hash joinAlexander Korotkov
Recognizing the real-life complexity where columns in the table often have functional dependencies, PostgreSQL's estimation of the number of distinct values over a set of columns can be underestimated (or much rarely, overestimated) when dealing with multi-clause JOIN. In the case of hash join, it can end up with a small number of predicted hash buckets and, as a result, picking non-optimal merge join. To improve the situation, we introduce one additional stage of bucket size estimation - having two or more join clauses estimator lookup for extended statistics and use it for multicolumn estimation. Clauses are grouped into lists, each containing expressions referencing the same relation. The result of the multicolumn estimation made over such a list is combined with others according to the caller's logic. Clauses that are not estimated are returned to the caller for further estimation. Discussion: https://postgr.es/m/52257607-57f6-850d-399a-ec33a654457b%40postgrespro.ru Author: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Andy Fan <zhihui.fan1213@gmail.com> Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com> Reviewed-by: Alena Rybakina <lena.ribackina@yandex.ru> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com>
2025-03-10Teach Append to consider tuple_fraction when accumulating subpaths.Alexander Korotkov
This change is dedicated to more active usage of IndexScan and parameterized NestLoop paths in partitioned cases under an Append node, as it already works with plain tables. As newly added regression tests demonstrate, it should provide more smartness to the partitionwise technique. With an indication of how many tuples are needed, it may be more meaningful to use the 'fractional branch' subpaths of the Append path list, which are more optimal for this specific number of tuples. Planning on a higher level, if the optimizer needs all the tuples, it will choose non-fractional paths. In the case when, during execution, Append needs to return fewer tuples than declared by tuple_fraction, it would not be harmful to use the 'intermediate' variant of paths. However, it will earn a considerable profit if a sensible set of tuples is selected. The change of the existing regression test demonstrates the positive outcome of this feature: instead of scanning the whole table, the optimizer prefers to use a parameterized scan, being aware of the only single tuple the join has to produce to perform the query. Discussion: https://www.postgresql.org/message-id/flat/CAN-LCVPxnWB39CUBTgOQ9O7Dd8DrA_tpT1EY3LNVnUuvAX1NjA%40mail.gmail.com Author: Nikita Malakhov <hukutoc@gmail.com> Author: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Andy Fan <zhihuifan1213@163.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com>
2025-02-19Fix freeing a child join's SpecialJoinInfoRichard Guo
In try_partitionwise_join, we try to break down the join between two partitioned relations into joins between matching partitions. To achieve this, we iterate through each pair of partitions from the two joining relations and create child join relations for them. To reduce memory accumulation during each iteration, one step we take is freeing the SpecialJoinInfos created for the child joins. A child join's SpecialJoinInfo is a copy of the parent join's SpecialJoinInfo, with some members being translated copies of their counterparts in the parent. However, when freeing the bitmapset members in a child join's SpecialJoinInfo, we failed to check whether they were translated copies. As a result, we inadvertently freed the members that were still in use by the parent SpecialJoinInfo, leading to crashes when those freed members were accessed. To fix, check if each member of the child join's SpecialJoinInfo is a translated copy and free it only if that's the case. This requires passing the parent join's SpecialJoinInfo as a parameter to free_child_join_sjinfo. Back-patch to v17 where this bug crept in. Bug: #18806 Reported-by: 孟令彬 <m_lingbin@126.com> Diagnosed-by: Tender Wang <tndrwang@gmail.com> Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Amit Langote <amitlangote09@gmail.com> Reviewed-by: Ashutosh Bapat <ashutosh.bapat.oss@gmail.com> Discussion: https://postgr.es/m/18806-d70b0c9fdf63dcbf@postgresql.org Backpatch-through: 17
2025-02-17Implement Self-Join EliminationAlexander Korotkov
The Self-Join Elimination (SJE) feature removes an inner join of a plain table to itself in the query tree if it is proven that the join can be replaced with a scan without impacting the query result. Self-join and inner relation get replaced with the outer in query, equivalence classes, and planner info structures. Also, the inner restrictlist moves to the outer one with the removal of duplicated clauses. Thus, this optimization reduces the length of the range table list (this especially makes sense for partitioned relations), reduces the number of restriction clauses and, in turn, selectivity estimations, and potentially improves total planner prediction for the query. This feature is dedicated to avoiding redundancy, which can appear after pull-up transformations or the creation of an EquivalenceClass-derived clause like the below. SELECT * FROM t1 WHERE x IN (SELECT t3.x FROM t1 t3); SELECT * FROM t1 WHERE EXISTS (SELECT t3.x FROM t1 t3 WHERE t3.x = t1.x); SELECT * FROM t1,t2, t1 t3 WHERE t1.x = t2.x AND t2.x = t3.x; In the future, we could also reduce redundancy caused by subquery pull-up after unnecessary outer join removal in cases like the one below. SELECT * FROM t1 WHERE x IN (SELECT t3.x FROM t1 t3 LEFT JOIN t2 ON t2.x = t1.x); Also, it can drastically help to join partitioned tables, removing entries even before their expansion. The SJE proof is based on innerrel_is_unique() machinery. We can remove a self-join when for each outer row: 1. At most, one inner row matches the join clause; 2. Each matched inner row must be (physically) the same as the outer one; 3. Inner and outer rows have the same row mark. In this patch, we use the next approach to identify a self-join: 1. Collect all merge-joinable join quals which look like a.x = b.x; 2. Add to the list above the baseretrictinfo of the inner table; 3. Check innerrel_is_unique() for the qual list. If it returns false, skip this pair of joining tables; 4. Check uniqueness, proved by the baserestrictinfo clauses. To prove the possibility of self-join elimination, the inner and outer clauses must match exactly. The relation replacement procedure is not trivial and is partly combined with the one used to remove useless left joins. Tests covering this feature were added to join.sql. Some of the existing regression tests changed due to self-join removal logic. Discussion: https://postgr.es/m/flat/64486b0b-0404-e39e-322d-0801154901f3%40postgrespro.ru Author: Andrey Lepikhov <a.lepikhov@postgrespro.ru> Author: Alexander Kuzmenkov <a.kuzmenkov@postgrespro.ru> Co-authored-by: Alexander Korotkov <aekorotkov@gmail.com> Co-authored-by: Alena Rybakina <lena.ribackina@yandex.ru> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: Robert Haas <robertmhaas@gmail.com> Reviewed-by: Andres Freund <andres@anarazel.de> Reviewed-by: Simon Riggs <simon@2ndquadrant.com> Reviewed-by: Jonathan S. Katz <jkatz@postgresql.org> Reviewed-by: David Rowley <david.rowley@2ndquadrant.com> Reviewed-by: Thomas Munro <thomas.munro@enterprisedb.com> Reviewed-by: Konstantin Knizhnik <k.knizhnik@postgrespro.ru> Reviewed-by: Heikki Linnakangas <hlinnaka@iki.fi> Reviewed-by: Hywel Carver <hywel@skillerwhale.com> Reviewed-by: Laurenz Albe <laurenz.albe@cybertec.at> Reviewed-by: Ronan Dunklau <ronan.dunklau@aiven.io> Reviewed-by: vignesh C <vignesh21@gmail.com> Reviewed-by: Zhihong Yu <zyu@yugabyte.com> Reviewed-by: Greg Stark <stark@mit.edu> Reviewed-by: Jaime Casanova <jcasanov@systemguards.com.ec> Reviewed-by: Michał Kłeczek <michal@kleczek.org> Reviewed-by: Alena Rybakina <lena.ribackina@yandex.ru> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com>
2025-02-17Adjust tuples estimate for appendrelsRichard Guo
In set_append_rel_size(), we currently set rel->tuples to rel->rows for an appendrel. Generally, rel->tuples is the raw number of tuples in the relation and rel->rows is the estimated number of tuples after the relation's restriction clauses have been applied. Although an appendrel itself doesn't directly enforce any quals today, its child relations may. Therefore, setting rel->tuples equal to rel->rows for an appendrel isn't always appropriate. Doing so can lead to issues in cost estimates in some cases. For instance, when estimating the number of distinct values from an appendrel, we would not be able to adjust the estimate based on the restriction selectivity. This patch addresses this by setting an appendrel's tuples to the total number of tuples accumulated from each live child, which better aligns with reality. This is arguably a bug, but nobody has complained about that until now, so no back-patch. Author: Richard Guo <guofenglinux@gmail.com> Reviewed-by: Tender Wang <tndrwang@gmail.com> Reviewed-by: Alena Rybakina <a.rybakina@postgrespro.ru> Discussion: https://postgr.es/m/CAMbWs4_TG_+kVn6fjG-5GYzzukrNK57=g9eUo4gsrUG26OFawg@mail.gmail.com
2025-02-04Allow usage of match_orclause_to_indexcol() for joinsAlexander Korotkov
This commit allows transformation of OR-clauses into SAOP's for index scans within nested loop joins. That required the following changes. 1. Make match_orclause_to_indexcol() and group_similar_or_args() understand const-ness in the same way as match_opclause_to_indexcol(). This generally makes our approach more uniform. 2. Make match_join_clauses_to_index() pass OR-clauses to match_clause_to_index(). 3. Also switch match_join_clauses_to_index() to use list_append_unique_ptr() for adding clauses to *joinorclauses. That avoids possible duplicates when processing the same clauses with different indexes. Previously such duplicates were elimited in match_clause_to_index(), but now group_similar_or_args() each time generates distinct copies of grouped OR clauses. Discussion: https://postgr.es/m/CAPpHfdv%2BjtNwofg-p5z86jLYZUTt6tR17Wy00ta0dL%3DwHQN3ZA%40mail.gmail.com Reviewed-by: Andrei Lepikhov <lepihov@gmail.com> Reviewed-by: Alena Rybakina <a.rybakina@postgrespro.ru> Reviewed-by: Pavel Borisov <pashkin.elfe@gmail.com>
2025-02-04Revise the header comment for match_clause_to_indexcol()Alexander Korotkov
Since d4378c0005e6, match_clause_to_indexcol() doesn't always return NULL for an OR clause. This commit reflects that in the function header comment. Reported-by: Pavel Borisov <pashkin.elfe@gmail.com>
2025-01-31Get rid of our dependency on type "long" for memory size calculations.Tom Lane
Consistently use "Size" (or size_t, or in some places int64 or double) as the type for variables holding memory allocation sizes. In most places variables' data types were fine already, but we had an ancient habit of computing bytes from kilobytes-units GUCs with code like "work_mem * 1024L". That risks overflow on Win64 where they did not make "long" as wide as "size_t". We worked around that by restricting such GUCs' ranges, so you couldn't set work_mem et al higher than 2GB on Win64. This patch removes that restriction, after replacing such calculations with "work_mem * (Size) 1024" or variants of that. It should be noted that this patch was constructed by searching outwards from the GUCs that have MAX_KILOBYTES as upper limit. So I can't positively guarantee there are no other places doing memory-size arithmetic in int or long variables. I do however feel pretty confident that increasing MAX_KILOBYTES on Win64 is safe now. Also, nothing in our code should be dealing in multiple-gigabyte allocations without authorization from a relevant GUC, so it seems pretty likely that this search caught everything that could be at risk of overflow. Author: Vladlen Popolitov <v.popolitov@postgrespro.ru> Co-authored-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://postgr.es/m/1a01f0-66ec2d80-3b-68487680@27595217
2025-01-16Add OLD/NEW support to RETURNING in DML queries.Dean Rasheed
This allows the RETURNING list of INSERT/UPDATE/DELETE/MERGE queries to explicitly return old and new values by using the special aliases "old" and "new", which are automatically added to the query (if not already defined) while parsing its RETURNING list, allowing things like: RETURNING old.colname, new.colname, ... RETURNING old.*, new.* Additionally, a new syntax is supported, allowing the names "old" and "new" to be changed to user-supplied alias names, e.g.: RETURNING WITH (OLD AS o, NEW AS n) o.colname, n.colname, ... This is useful when the names "old" and "new" are already defined, such as inside trigger functions, allowing backwards compatibility to be maintained -- the interpretation of any existing queries that happen to already refer to relations called "old" or "new", or use those as aliases for other relations, is not changed. For an INSERT, old values will generally be NULL, and for a DELETE, new values will generally be NULL, but that may change for an INSERT with an ON CONFLICT ... DO UPDATE clause, or if a query rewrite rule changes the command type. Therefore, we put no restrictions on the use of old and new in any DML queries. Dean Rasheed, reviewed by Jian He and Jeff Davis. Discussion: https://postgr.es/m/CAEZATCWx0J0-v=Qjc6gXzR=KtsdvAE7Ow=D=mu50AgOe+pvisQ@mail.gmail.com
2025-01-15Rename RowCompareType to CompareTypePeter Eisentraut
RowCompareType served as a way to describe the fundamental meaning of an operator, notionally independent of an operator class (although so far this was only really supported for btrees). Its original purpose was for use inside RowCompareExpr, and it has also found some small use outside, such as for get_op_btree_interpretation(). We want to expand this now, as a more general way to describe operator semantics for other index access methods, including gist (to improve GistTranslateStratnum()) and others not written yet. To avoid future confusion, we rename the type to CompareType and the symbols from ROWCOMPARE_XXX to COMPARE_XXX to reflect their more general purpose. Reviewed-by: Mark Dilger <mark.dilger@enterprisedb.com> Discussion: https://www.postgresql.org/message-id/flat/E72EAA49-354D-4C2E-8EB9-255197F55330@enterprisedb.com
2025-01-02Fix an assortment of spelling mistakes and typosDavid Rowley
Author: Alexander Lakhin <exclusion@gmail.com> Discussion: https://postgr.es/m/5812a0b9-b0cf-4151-9a14-d9f00e4f2858@gmail.com
2025-01-01Update copyright for 2025Bruce Momjian
Backpatch-through: 13
2024-11-29Skip not SOAP-supported indexes while transforming an OR clause into SAOPAlexander Korotkov
There is no point in transforming OR-clauses into SAOP's if the target index doesn't support SAOP scans anyway. This commit adds corresponding checks to match_orclause_to_indexcol() and group_similar_or_args(). The first check fixes the actual bug, while the second just saves some cycles. Reported-by: Alexander Lakhin Discussion: https://postgr.es/m/8174de69-9e1a-0827-0e81-ef97f56a5939%40gmail.com Author: Alena Rybakina Reviewed-by: Ranier Vilela, Alexander Korotkov, Andrei Lepikhov
2024-11-28Remove useless casts to (void *)Peter Eisentraut
Many of them just seem to have been copied around for no real reason. Their presence causes (small) risks of hiding actual type mismatches or silently discarding qualifiers Discussion: https://www.postgresql.org/message-id/flat/461ea37c-8b58-43b4-9736-52884e862820@eisentraut.org
2024-11-26Reordering DISTINCT keys to match input path's pathkeysRichard Guo
The ordering of DISTINCT items is semantically insignificant, so we can reorder them as needed. In fact, in the parser, we absorb the sorting semantics of the sortClause as much as possible into the distinctClause, ensuring that one clause is a prefix of the other. This can help avoid a possible need to re-sort. In this commit, we attempt to adjust the DISTINCT keys to match the input path's pathkeys. This can likewise help avoid re-sorting, or allow us to use incremental-sort to save efforts. For DISTINCT ON expressions, the parser already ensures that they match the initial ORDER BY expressions. When reordering the DISTINCT keys, we must ensure that the resulting pathkey list matches the initial distinctClause pathkeys. This introduces a new GUC, enable_distinct_reordering, which allows the optimization to be disabled if needed. Author: Richard Guo Reviewed-by: Andrei Lepikhov Discussion: https://postgr.es/m/CAMbWs48dR26cCcX0f=8bja2JKQPcU64136kHk=xekHT9xschiQ@mail.gmail.com
2024-11-25Remove the wrong assertion from match_orclause_to_indexcol()Alexander Korotkov
Obviously, the constant could be zero. Also, add the relevant check to regression tests. Reported-by: Richard Guo Discussion: https://postgr.es/m/CAMbWs4-siKJdtWhcbqk4Y-xG12do2Ckm1qw672GNsSnDqL9FQg%40mail.gmail.com
2024-11-24Teach bitmap path generation about transforming OR-clauses to SAOP'sAlexander Korotkov
When optimizer generates bitmap paths, it considers breaking OR-clause arguments one-by-one. But now, a group of similar OR-clauses can be transformed into SAOP during index matching. So, bitmap paths should keep up. This commit teaches bitmap paths generation machinery to group similar OR-clauses into dedicated RestrictInfos. Those RestrictInfos are considered both to match index as a whole (as SAOP), or to match as a set of individual OR-clause argument one-by-one (the old way). Therefore, bitmap path generation will takes advantage of OR-clauses to SAOP's transformation. The old way of handling them is also considered. So, there shouldn't be planning regression. Discussion: https://postgr.es/m/CAPpHfdu5iQOjF93vGbjidsQkhHvY2NSm29duENYH_cbhC6x%2BMg%40mail.gmail.com Author: Alexander Korotkov, Andrey Lepikhov Reviewed-by: Alena Rybakina, Andrei Lepikhov, Jian he, Robert Haas Reviewed-by: Peter Geoghegan
2024-11-24Transform OR-clauses to SAOP's during index matchingAlexander Korotkov
This commit makes match_clause_to_indexcol() match "(indexkey op C1) OR (indexkey op C2) ... (indexkey op CN)" expression to the index while transforming it into "indexkey op ANY(ARRAY[C1, C2, ...])" (ScalarArrayOpExpr node). This transformation allows handling long OR-clauses with single IndexScan avoiding diving them into a slower BitmapOr. We currently restrict Ci to be either Const or Param to apply this transformation only when it's clearly beneficial. However, in the future, we might switch to a liberal understanding of constants, as it is in other cases. Discussion: https://postgr.es/m/567ED6CA.2040504%40sigaev.ru Author: Alena Rybakina, Andrey Lepikhov, Alexander Korotkov Reviewed-by: Peter Geoghegan, Ranier Vilela, Alexander Korotkov, Robert Haas Reviewed-by: Jian He, Tom Lane, Nikolay Shaplov
2024-10-15Move clause_sides_match_join() into restrictinfo.hDavid Rowley
Two near-identical copies of clause_sides_match_join() existed in joinpath.c and analyzejoins.c. Deduplicate this by moving the function into restrictinfo.h. It isn't quite clear that keeping the inline property of this function is worthwhile, but this commit is just an exercise in code deduplication. More effort would be required to determine if the inline property is worth keeping. Author: James Hunter <james.hunter.pg@gmail.com> Discussion: https://postgr.es/m/CAJVSvF7Nm_9kgMLOch4c-5fbh3MYg%3D9BdnDx3Dv7Fcb64zr64Q%40mail.gmail.com
2024-10-14Track sort direction in SortGroupClausePeter Eisentraut
Functions make_pathkey_from_sortop() and transformWindowDefinitions(), which receive a SortGroupClause, were determining the sort order (ascending vs. descending) by comparing that structure's operator strategy to BTLessStrategyNumber, but could just as easily have gotten it from the SortGroupClause object, if it had such a field, so add one. This reduces the number of places that hardcode the assumption that the strategy refers specifically to a btree strategy, rather than some other index AM's operators. Author: Mark Dilger <mark.dilger@enterprisedb.com> Discussion: https://www.postgresql.org/message-id/flat/E72EAA49-354D-4C2E-8EB9-255197F55330@enterprisedb.com
2024-10-12Correctly identify which EC members are computable at a plan node.Tom Lane
find_computable_ec_member() had the wrong mental model of what its primary caller prepare_sort_from_pathkeys() would do with the selected EquivalenceClass member expression. We will not compute the EC expression in a plan node atop the one returning the passed-in targetlist; rather, the EC expression will be computed as an additional column of that targetlist. So any Var or quasi-Var used in the given tlist is also available to the EC expression. In simple cases this makes no difference because the given tlist is just a list of Vars or quasi-Vars --- but if we are considering an appendrel member produced by flattening a UNION ALL, the tlist may contain expressions, resulting in failure to match and a "could not find pathkey item to sort" error. To fix, we can flatten both the tlist and the EC members with pull_var_clause(), and then just check for subset-ness, so that the code is actually shorter than before. While this bug is quite old, the present patch only works back to v13. We could possibly make it work in v12 by back-patching parts of 375398244. On the whole though I don't like the risk/reward ratio of that idea. v12's final release is next month, meaning there would be no chance to correct matters if the patch causes a regression. Since this failure has escaped notice for 14 years, it's likely nobody will hit it in the field with v12. Per bug #18652 from Alexander Lakhin. Andrei Lepikhov and Tom Lane Discussion: https://postgr.es/m/18652-deaa782ebcca85d1@postgresql.org
2024-10-09Avoid crash in estimate_array_length with null root pointer.Tom Lane
Commit 9391f7152 added a "PlannerInfo *root" parameter to estimate_array_length, but failed to consider the possibility that NULL would be passed for that, leading to a null pointer dereference. We could rectify the particular case shown in the bug report by fixing simplify_function/inline_function to pass through the root pointer. However, as long as eval_const_expressions is documented to accept NULL for root, similar hazards would remain. For now, let's just do the narrow fix of hardening estimate_array_length to not crash. Its behavior with NULL root will be the same as it was before 9391f7152, so this is not too awful. Per report from Fredrik Widlert (via Paul Ramsey). Back-patch to v17 where 9391f7152 came in. Discussion: https://postgr.es/m/518339E7-173E-45EC-A0FF-9A4A62AA4F40@cleverelephant.ca